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Abstract. The possibility that the conditional maximum likelihood estimator 
(CMLE) is superior to the unconditional maximum likelihood estimator 
(UMLE) is discussed in examples where the residual likelihood is obstruc- 
tive. We observe relatively smaller risks of the CMLE for a finite sample 
size. The models in the study include the normal, inverse Gauss, gamma, 
two-parameter exponential, logit, negative binomial and two-parameter 
geometric ones. 
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1. Introduction 

Let xl,... ,  xn be a sample of size n from a population with the density 
function p(x;  O, lz), 0 e 0 C R ~ and/ t  • M C  R 1. Suppose that there exists a 
statistic t such that the entire likelihood for x = (Xl,..., x,) is factored into 

(1.1) p(x; O, p) = pc(x; OI t).pr(t; O, lu) , 

where pc stands for the conditional likelihood given t being free from p and 
pr the residual likelihood. Traditionally, the parameter 0 is called the 
structural parameter and/~ is called the nuisance or incidental parameter, 
though our interest is often placed on both the parameters. Under this 
setup, conditional inference for 0 has attracted researchers' attention. 
Under weak regularity conditions, the likelihood equation for the CMLE 
of 0 is written as 

O 
(1.2) O0 log pc(x; Olt) = 0 ,  

269 


