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Abstract. The problem of constructing bootstrap confidence intervals 
for the mode of a density is considered. Estimates of the mode are 
derived from kernel density estimates based on fixed and data-dependent 
bandwidths. The asymptotic validity of bootstrap techniques to estimate 
the sampling distribution of the estimates is investigated. In summary, the 
results are negative in the sense that a straightforward application of a 
naive bootstrap yields invalid inferences. In particular, the bootstrap fails 
if resampling is done from the kernel density estimate. On the other hand, 
if one resamples from a smoother kernel density estimate (which is 
necessarily different from the one which yields the original estimate of the 
mode), the bootstrap is consistent. The bootstrap also fails if resampling 
is done from the empirical distribution, unless the choice of bandwidth is 
suboptimal. Similar results hold when applying bootstrap techniques to 
other functionals of a density. 
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1. Introduction 

The bootstrap, first introduced by Efron (1979), is a general, powerful 
technique for constructing confidence intervals by approximating the 
sampling distribution of a pivot. Some asymptotic theory has been developed 
by Bickel and Freedman (1981) and Beran (1984), among others. The 
asymptotic validity of the bootstrap has been established for constructing 
confidence intervals for a wide variety of statistical functionals T(F), when 
T(F) is, in some sense, a smooth functional of the unknown distribution F. 
Relatively little is known about the performance of bootstrap confidence 
intervals for functionals of a density. In particular, the bootstrap simulates 
the distribution of an approximate pivot by resampling from an estimate of 
the underlying population. Often, the empirical distribution is a good 
choice of resampling distribution. However, when the population is known 
to be smooth and have a density, it makes sense to simulate observations 
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