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Introduction of 
the Akaike Memorial Lecture

Award

Prof. Tomoyuki Higuchi

Director‐General, 

The Institute of Statistical Mathematics (ISM)
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Hirotugu Akaike（1927－2009）
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*This slide was made by Dr. Genshiro Kitagawa, President of the Research 
Organization of Information and Systems (ROIS)  



Brief History

1952 Graduated from Math. Dept., Tokyo University Researcher
of the Institute of Statistical Mathematics

Head of 2nd Section, 1st Division
Director of 5th Division 

Director of Dept. of Prediction and Control 

Director-General of ISM (-1994)
Member of Science Council of Japan (- 1991)
Chair of Dept. of Statistical Science, Graduate University of
Advanced Study
Prof. Emeritus, ISM
Prof. Emeritus, Graduate Univ. for Advance Study

1962
1973
1985
1986
1988

1994
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*This slide was made by Dr. Genshiro Kitagawa, President of the Research 
Organization of Information and Systems (ROIS)  

Prizes

1972 Ishikawa Prize
（Establishment of statistical analysis and control method for dynamic systems）

Okochi Prize
（Research and realization of optimal steam temperature control of thermal electric plant）

Asahi Prize
（Research on statistics, in particular theory and applications of AIC）

The Purple Ribbon Medal
（Statistics, in particular time series analysis and its applications）

1980

1989

The 1st Japan Statistical Society Prize
（Contributions to statistical theory and its applications）

The Order of the Sacred Treasure 

Kyoto Prize
（ Major contribution to statistical science and modeling with the development of AIC）

1996

2000

2006

Fellow of ASA, RSS, IMS, IEEE, JSS
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For more information of 
Dr. Hirotugu Akaike, 
please visit our website.

http://www.ism.ac.jp/akaikememorial/index‐e.html
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Laureate of 22nd Kyoto Prize

"Major contribution to statistical science 
and modeling with the development of 
theAkaike Information Criterion (AIC)”
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Japan Statistical Society 

July 14, 2016 
 

The Institute of Statistical Mathematics and the Japan Statistical 

Society Joint Inaugural Akaike Memorial Lecture Award, 

Selection of the First Awardee 
 
◆ Introduction 

The Institute of Statistical Mathematics (ISM) and the Japan Statistical Society (JSS) have inaugurated the 

Akaike Memorial Lecture Award under their joint sponsorship. The lecture will be presented during the 

Japanese Joint Statistical Meeting, a combined meeting of the organizations involved in the statistical sciences, 

and will feature a biennial lecturer recognized for his or her research accomplishments in this field. A memorial 

to the legacy of Dr. Hirotugu Akaike, we hope that this lecture will be a valuable stimulus to the minds of 

younger colleagues and contribute to the development of the statistical sciences. 

The first lecture will be held as the planning session of the JSS for the 2016 Japanese Joint Statistical 

Meeting, which will be held at Kanazawa University from Sunday, September 4 to Wednesday, September 7.  

As the awardee, ISM and JSS are proud to announce to have retained Prof. C.F. Jeff Wu of Georgia Institute 

of Technology, School of Industrial and Systems Engineering. 

 

◆ Overview of the Akaike Memorial Lecture Award 

The Akaike Memorial Lecture Award has been planned since 2014 under the joint sponsorship of ISM and 

JSS. We have named this lecture award after Dr. Hirotugu Akaike, who left a wide-reaching and influential 

legacy of research in the statistical sciences, and intend for these events to be both opportunities for exchange 

among statistical researchers from inside and outside Japan and to provide inspiration to young and talented 

researchers, contributing to further advances in this field. 

Every two years, one lecturer is selected under the standards of the Akaike Memorial Lecture Award 

Nominating Committee from among those individuals who have, like Dr. Akaike, stood out as being ahead of 

their time, exercising an international influence over a wide range of fields in the statistical sciences (including 

mathematical sciences such as control and optimization, and mathematical engineering) and applied fields. The 

awardee receives a ¥100,000 honorarium, an award plaque, and travel expenses.   



 

 2 / 4 
 

Japan Statistical Society 

To promote the education of students and young researchers, the Akaike Memorial Lecture features a selected 

board of representatives who will engage in discussions after the lecture. The lecture and follow-up discussion 

will be published as an invited paper in the Annals of the Institute of Statistical Mathematics (AISM) or the 

Journal of the Japan Statistical Society (JJSS). 

 

◆ First Awardee: Prof. Chien-Fu Jeff Wu 
【Experience】 

1949 Born in Taiwan 

1971 B.Sc. (Mathematics) National Taiwan University 

1976 Ph.D. (Statistics) University of California, Berkeley, USA 

1976-1977 Lecturer, Department of Statistics University of California, Berkeley, USA 

1977-1980 Assistant Professor, Department of Statistics, University of Wisconsin, Madison, USA 

1980-1983 Associate Professor, Department of Statistics, University of Wisconsin, Madison 

1983-1988 Professor, Department of Statistics, University of Wisconsin, Madison 

1988-1993 Professor and GM/NSERC Chair in Quality and Productivity, Department of Statistics and 

Actuarial Science, University of Waterloo, Canada 

1993-2003 Professor and Chair (1995-1998), Department of Statistics and Department of Industrial and 

Operations Engineering, University of Michigan, Ann Arbor, USA 

1997-2003 H. C. Carver Professor of Statistics, University of Michigan, Ann Arbor 

2003- Professor and Coca-Cola Chair in Engineering Statistics, School of Industrial and Systems 

Engineering, Georgia Institute of Technology, Atlanta, USA 

【Research Accomplishments】 

Prof. C.F. Jeff Wu has been a vigorous pioneer in the theory of experimental design, EM algorithms and 

resampling, especially bootstrapping. His research has addressed a broad spectrum of topics in statistics; let us 

describe some of his particularly notable accomplishments below. 

He proposed a general optimal design algorithm using the fact that approximate optimal design problems 

become constrained convex problems and proved that they converge asymptotically to the optimal design. He 

examined the convergence of EM algorithms and obtained results under conditions that are applicable to most 

practical problems. He also made key contributions to the justification of the bootstrapping and jackknife 

methods from the viewpoint of mathematical statistics. 

As experimental design methods were quickening the development of new products and technologies in 
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Japanese industry in the early 1990s, Prof. Wu used advances in statistical methods to propose fundamental 

revisions to experimental design, based on the agricultural methods of R. A. Fisher and the robust parameter 

design method of Genichi Taguchi. He developed a new method called “conditional main effect analysis” for 

distinguishing among the effects of configuration, sparsity, the principle of transmission, and aliasing in 

factorial experiments, thereby contributing greatly to the development of the technometrics field. 

Recently, Prof. Wu has devoted attention to virtual experiments on computers, in search of principles beyond 

those identified by Fisher for problems examined with numerical experiments. 

【Reasons for Award】 

Prof. Wu has conducted vigorous and pioneering work on the theory of experimental design, EM algorithms 

and resampling. His support of industry has also been highly valued and he has received many awards in 

statistical quality control. He has long recognized the importance of data science; on entering his post as H. C. 

Carver Professor at Michigan University in 1997, he gave a speech titled “Statistics = Data Science?” in which 

he emphasized the role of analysis of large volumes of data and cooperation with people in fields outside of 

statistics. More recently, he has proposed new methods for experimental design, adapted to the procedures of 

experiments performed on computers (simulations). Prof. Wu has maintained an exemplary balance among 

theory, procedure and applications in his research. Since he first came to Japan in 1987 together with Prof. G. E. 

P. Box to observe quality control in industries, he has visited this country many times and continued exchanges 

with Japanese statisticians and the industrial sector. 

Prof. Wu has also visited ISM on several occasions to lecture and engage in discussions and debates with our 

young researchers. On the strength of Prof. Wu’s record of research achievements as a statistician and his strong 

links with ISM and JSS, the nominating committee was proud to recommend Prof. Wu as an entirely 

appropriate awardee to deliver the first Akaike Memorial Lecture. 

 

◆ Akaike Memorial Lecture 2016 
Speaker: Prof. C.F. Jeff Wu 

 (Georgia Institute of Technology, School of Industrial and Systems Engineering) 
Title: A fresh look at effect aliasing and interactions: some new wine in old bottle 
Date and Time: September 5, 2016, 15:30-17:30  
Place: Kakuma Campus, Kanazawa University 

http://www.kanazawa-u.ac.jp/e/campuses/  
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◆ Biography of Dr. Hirotugu Akaike 
Born on Nov. 5, 1927 in Shizuoka Prefecture, Japan, Hirotugu Akaike graduated from the First Higher 

School, the Imperial Naval Academy, and the Tokyo University Science Department Mathematics Faculty. He 

was accepted into the Institute of Statistical Mathematics in 1952. 

He led the way in the field of time series analysis, with R&D resulting in software packages such as TIMSAC 

for spectral analysis, multivariate time series models, and statistical control methods. In the 1970s, he advocated 

for what was named the Akaike Information Criterion, a standard for data volume, establishing a new, 

prediction-centered paradigm for statistical modeling differing from conventional statistical theory. His research 

influenced a sweeping variety of research fields. In the 1980s, he participated in the development of practical 

implementations of Bayesian modeling, and played a leading role in finding new data processing methods 

suitable for the high-information age in which we now live. His research results were held in the highest esteem 

by his colleagues and earned him many prizes, including the Medal of Honor (Purple Ribbon), the Second Class 

Order of the Sacred Treasure, and the Kyoto Prize. Citations of his works continue to grow. 

Dr. Akaike took the position of Director-General of ISM in 1986. While overseeing the operation of the 

Institute, he also took part in establishing and teaching on the Statistical Studies program at the Graduate 

University for Advanced Studies. His term as Director-General ended in 1994. He was appointed Professor 

Emeritus at the Graduate University for Advanced Studies but never lost his passion for research; rather than 

resting on his well-deserved laurels, he continued his work, publishing studies on Bayesian models and of the 

golf swing. He also served as the 19th president of the Japan Statistical Society from January, 1989 to December, 

1990. He passed away in Ibaraki Prefecture on August 4, 2009 (age 81). 
Hirotugu Akaike Memorial Website: 

http://www.ism.ac.jp/akaikememorial/index_e.html  

 



A fresh look at effect aliasing and interactions: 
some new wine in old bottles 

• Traditional view of effect aliasing and interactions.
• De-aliasing of “aliased effects”: using reparametrization and 

exploiting nonorthogonality in  parametrization .
• De-aliasing strategies for:

- two-level (regular) fractional factorial designs;
- nonregular FFDs (e.g., Plackett-Burman designs);
- three-level FFDs.

• Applications in machine learning: bi-level variable selection. 
• A historical perspective. 

3

C. F. Jeff Wu
Industrial and Systems Engineering 

Georgia Institute of Technology

A 24-1 design example

• Consider a 24-1design with I = ABCD

4

A B C D AB =   CD
- - - - + +
- - + + + +
- + - + - -
- + + - - -
+ - - + - -
+ - + - - -
+ + - - + +
+ + + + + +



Aliasing of effects
• The two-factor interactions (2fi’s) AB and CD are said to 

be aliased (Finney, 1945) because they represent the 
same contrast (same column in matrix); mathematically 
similar to confounding between treatment and block 
effects (Yates, 1937).

• Traditional wisdom: The pair of effects cannot be 
disentangled, and are thus not estimable. They are said 
to be fully aliased.

• A provocative question: can they be de-aliased without
adding runs? 

• Hint: view AB as part of the 3d space of A, B, AB; 
similarly for C, D, CD; joint space has 5 dimensions, not 
6; then reparametrize each 3d space.
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Two-factor Interaction 
via conditional main effects

• Define the conditional main effect of A given B at 
level +:                                                                        
similarly, 

Then          	ܤܣ ൌ ܧܯ ܣ ܤ ൅ െܧܯ ܣ ܤ െ /2.

• can view the conditional main effect ܧܯ ܣ ܤ ൅ ܧܯ , ܣ ܤ െ

as interaction components. 

• Original ideas in  my 2011 Fisher Lecture, later in JASA, 
2015; fully developed ideas and methodology in Su and 
Wu, 2017, J. Quality Tech. to appear.)
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ܧܯ ܣ ܤ ൅ ൌ തݕ ܣ ൅ ܤ ൅ െ തݕ ܣ െ ܤ ൅

ܧܯ ܣ ܤ െ ൌ തݕ ܣ ൅ ܤ െ െ തݕ ܣ െ ܤ െ



Defining relations of cme’s
• In effect estimation, we have 

– ܧܯ ܣ ൅ ܶܰܫ ,ܣ ܤ ൌ ܿ݉݁ሺܤ|ܣ൅ሻ. 
– ܧܯ ܣ െ ܶܰܫ ,ܣ ܤ ൌ ܿ݉݁ሺܤ|ܣെሻ. 

• In short hand notation, we have 
– ଵ

ଶ

– ଵ

ଶ

• Terminology:
A: parent effect; AB: interaction effect

7

A

+
+
-
-

A|B-

0
+
0
-

/2

A
B

+
-
-
+

Orthogonal modeling
• For a ௞ି௣ design with k factors, the set of 

candidate effects consists of cme’s, 
main effects and 2fi’s.

• Without any restriction, it is hard to find good 
models from such a large candidate set, i.e., 
can lead to many incompatible models.

• In this work, we restrict the model search to 
orthogonal models, i.e., effects in a candidate 
model are orthogonal to each other.

8



Orthogonality relations I

• cme’s are orthogonal to all the traditional 
effects, except for their parent effects and 
interaction effects.

• cme’s having the same parent effect and 
interaction effect are twins.

• Twin cme’s are orthogonal.

9

Rule 1
• Substitute a pair of 2fi and its parental main 

effect with similar magnitude by one of the 
corresponding twin cme’s.
– If the pair have the same sign

• ܿ݉݁ ܣ ܤ ൅ ൌ ܧܯ ܣ ൅ ܶܰܫ ,ܣ ܤ will have larger magnitude 
than both A and AB

• Replace A and AB with (A|B+)
– If the pair have the opposite signs

• ܿ݉݁ ܣ ܤ െ ൌ ܧܯ ܣ െ ܶܰܫ ,ܣ ܤ will have larger magnitude 
than both A and AB

• Replace A and AB with (A|B-)

10



Orthogonal relations II
• cme’s having the same parent effect but 

different interaction effects are siblings.
• Siblings are NOT orthogonal 
• cme’s having the same 
or fully aliased interaction 
effects are said to belong 
to the same family.
• Non-twin cme’s in the
family are non-orthogonal, which is the key to 
the success of the CME analysis strategy.

11

Rules 2 and 3
• Rule 2: Only one cme among its siblings can be 

included in the model. Only one cme from a 
family can be included in the model.

• cme’s having different parent effect and 
interaction effect are orthogonal to each other.

• Rule 3: cme’s with different parent effects 
and different interaction effects can be 
included in the same model.

12



CME Analysis

• Based on the three rules, we propose the CME 
analysis:
– (i). Use the traditional analysis methods such as 

ANOVA or half-normal plot, to select significant 
effects, including aliased pairs of effects. Go to (ii).

– (ii). Among all the significant effects, use Rule 1 
to find a pair of fully aliased 2fi and its parental 
main effect, and substitute them with an 
appropriate cme. Use Rules 2 and 3 to guide the 
search and substitution of other such pairs until 
they are exhausted.

13

Example (Filtration)
• 2ூ௏

ସିଵ design with ܫ ൌ ܦܥܤܣ

• Traditional analysis:

ܣ~ݕ ൅ ܦܣ ൅ ܥܣ ൅ ܦ ൅ ܥ

• Step (ii)
– A and AD are both significant
– Consider either (A|D+) or (A|D-)
– D and DB(=AC) are both significant
– Consider either (D|B+) or (D|B-) 

(A|D+) (D|B-)

14

The CME analysis



Summary of Example
• In the traditional analysis, we have:
 ܣ~ݕ 0.45% ൅ ܦܣ 0.45% ൅ ܥܣ 0.47% ൅ ܦ 0.59% ൅ ܥ 0.82% . ܴଶ ൌ 99.79%

• In the CME analysis, we have:
 ~ݕ ܣ ܦ ൅ 	 0.013% ൅ 	ܥܣ 0.039% ൅ 	ܦ 0.055% ൅ 	ܥ 0.089% . ܴଶ ൌ 99.79%

 ~ݕ ܣ ܦ ൅ 	 1.96 ൈ 10ିହ ൅ ܦ ܤ െ 	 2.72 ൈ 10ିହ ൅ 	ܥ 0.026% . ܴଶ ൌ 99.66%

• The third model is the best in terms of p values for 
significant effects. All three models have nearly the 
same ଶ values.

• The cme’s (A|D+) and (D|B-) have good engineering 
interpretations, while AD and AC in first model are 
fully aliased, thus no good interpretation.

15
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Regular Fractional Factorial Designs

• Regular (                   designs):
algebraic definition: columns of the design 
matrix form a group over a finite field; 
the interaction between any two columns is 
among the columns.
statistical definition: any two factorial effects 
are either orthogonal or fully aliased (WH 
book). 

• Until the mid-80s, regular FFDs dominated 
the theory and practice of FFD. 

knkn  3  ,2
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Nonregular Fractional Factorial Designs

• Nonregular designs:
some pairs of factorial effects can be partially
aliased (i.e., non-orthogonal nor fully aliased);
 more complex aliasing pattern.

• Its practice in the west was popularized by G. 
Taguchi when he introduced his favored 
orthogonal arrays like L18 and L36 in the mid-80’s 
to the US. His motivation was practical. 

• I got interested in  this class of designs for their 
flexibility in sample size but later discovered their 
capability in estimating interactions. 

• An inspirational moment in the summer heat of 
Nagoya (Central Japan Quality Association) in 
1986, during our delegation visit (led by G. Box) to 
Japan to learn its quality practice.
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Design Matrix OA(12, 27) and Lifetime Data
)2,12( 11OA (Hadamard matrix of order 12)

Lifetime data (Hunter et al., 1982, Metallurgical Trans.)
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Blood Glucose Experiment

)32,18( 71OA (Masuyama 增山元三郎, 1957;
Taguchi, 田口玄一，1987)
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Partial and Complex Aliasing
• For the 12-run Plackett-Burman design OA(12, 211)

partial aliasing: coefficient 
complex aliasing:               partial aliases.

• In partial aliasing, interactions and main effects are 
not orthogonal to each other; non-orthogonality is 
the key to success of our analysis strategy. 

• Traditionally, complex aliasing was considered to 
be a disadvantage (called “hazards”  by C. 
Daniel).Standard texts (until WH) pay little attention 
to this type of designs. 





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A paradigm shift
• Traditionally experiments with complex aliasing  

were used for screening purpose, i.e., 
estimating main effects only.

• A paradigm shift: using effect sparsity and effect 
heredity, Hamada-Wu (1992) recognized that 
complex aliasing can be turned into an 
advantage for studying interactions.

• Allows interactions to be studied without making 
additional runs.

21

Guiding Principles 
for Factorial Effects

• Effect Hierarchy Principle:
– Lower order effects more important than higher 

order effects;
– Effects of same order equally important.

• Effect Sparsity Principle: Number of relatively 
important effects is small.

• Effect Heredity Principle: for an interaction to be 
significant, at least one of its parent factors should be 
significant.

(Wu-Hamada “Experiments”, 2000, 2009; Wu, 2015)
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HW analysis strategy

• Use effect sparsity to realize that the size of true 
model(s) is much smaller than the nominal size.

• Use effect heredity to rule out many incompatible 
models in model search.

• Use the Bayesian variable selection method to 
perform efficient search over a large space; 
Chipman’s (1996) Bayesian formulation 
incorporating such design principles.

• Effective if the number of significant interactions 
is small.

23
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• Main effect analysis:  F          (R2=0.45)
F, D          (R2=0.59)

− Original experimenters dissatisfied with result: wrong
sign of D effect, and suggested a DE interaction, 
claim design did not have enough information. 

• HW analysis:             F, FG        (R2=0.89)
F, FG, D   (R2=0.92)

− 95% CI for D contains positive effect (true by 
engineering), also the identified FG is partially aliased 
with the suspected DE. Better fit (R2 doubled) and 
correct engineering interpretation. 

Analysis Results: 
Cast Fatigue Experiment
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• Frequentist analysis (HW strategy):
Main effect analysis: Eq, Fq (R2=0.36)
HW analysis:            Bl, (BH)lq, (BH)qq (R2=0.89)

• Bayesian analysis also identifies Bl, (BH)ll, (BH)lq, 
(BH)qq as having the highest posterior model 
probability.

• Main effect analysis gave very poor fit, completely 
missed the important factors, and incapable of 
finding interactions. 

Analysis results:
Blood Glucose Experiment
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Useful Orthogonal Arrays
• Collection in Wu-Hamada book:

OA(12,211)*, OA(12,3124), OA(18,2137)*, 
OA(18,6126), OA(20,219), OA(24,31216),
OA(24,61214), OA(36,211312)*, OA(36,3763), 
OA(36,2863), OA(48,211412), OA(50,21511), OA(54,21325).

• Run Size Economy:
OA(12,211) vs. 16-run 2k-p designs, 8 ൑ ݇ ൑ 11, 
OA(18,27)  vs. 27-run 3k-p designs, 5 ൑ ݇ ൑ 7, 
OA(36, 211312): saturated (i.e., use up all degrees of 
freedom).

• Taguchi called * L12(211), L18(2137), L36(211312).



OA(36, 312) (Seiden, 1954)
OA(36, 211 312) (Taguchi, 1987)
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Implications and follow-up work
• Success in the HW analysis strategy led to research on 

the hidden projection properties of nonregular designs. 
Commonly used arrays like OA(12, 211), OA(18, 37), 
have desirable projection properties (i.e., a number of 
interactions can be estimated with good efficiency); Lin-
Draper (1993), Wang-Wu (1995). 

• It has rejuvenated research and opened a new field on 
optimal nonregular designs, including extensions of the 
minimum aberration  design theory to nonregular
designs; generalized minimum  aberration (Tang-Deng, 
Deng-Tang, 1999, Xu-Wu, 2001), minimum moment 
aberration (Xu, 2003), etc. 
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Effect Heredity Principle
• Coined by Hamada-Wu (1992), used to rule out 

incompatible models in model search. Original 
motivation:  application to analysis of 
experiments with complex aliasing. 

• Strong (both parents) and weak (single parent) 
versions defined by Chipman (1996) in Bayesian 
framework; strong heredity is the same as the 
marginality principle by McCullagh-Nelder
(1989) but their motivation was to keep model 
invariance. 

29

A computational challenge in 
variable selection

• Select the important subset of variables:

• A very difficult optimization problem when 
q is large.
– 22q+q(q-1)/2 possible models.
– Even for q = 5, there are a million models.

• Stepwise regression techniques: unstable.

30

ܻ ൌ ଵߚ ଵܺ ൅ ⋯൅ ௤ܺ௤ߚ ൅ ଵଵߚ ଵܺ
ଶ ൅ ଵଶߚ ଵܺܺଶ ൅ ⋯൅ ௤௤ܺ௤ଶߚ ൅ ߳



Use of heredity principle in 
variable selection

• Aliasing leads to infinite number of optima for least squares 
minimization. Heredity rule helps to break the aliases and 
reduce the number of local minima. This helps the search 
for best models through optimization techniques.

• A digression: nonnegative garrote:
ଵ

ଶ
∥ ܻ െ ߠመ௅ௌߚܺ ∥ଶ, subject	to	 ∑ ௝ߠ

௣
௝ୀଵ ൑ ௝ߠ	and		ܯ ൒ 0	∀݆,

where ߚመ௝௅ௌ is the least squares estimate of ߚ௝ in the 
regression model.

• Since both constraints and objective are convex, this allows 
much faster computations using quadratic programming 
techniques.

31

Use of heredity principle in 
variable selection (continued)

• Yuan, Joseph, Zou (2009) used nonnegative garrote	to 
reformulate the strong heredity principle by using the 
convexity constraints:

௜ߠ ൑ ݆	∀	௝ߠ ∈ 	,௜ܦ
where ܦ௜ ൌ set of parent effects of ߠ௜. Example: ߠ௜ ൌ
ܤܣ , ௜ܦ ൌ ሼܣ,  ?ሽ. Why does it imply strong heredityܤ

Ans: If ߠ௜ ൐ 0 (i.e. active), then ߠ௝ ൐ 0 (active) ∀	݆ ∈ .௜ܦ
• Similarly, for weak heredity, they used the convexity 

constraints: 
௜ߠ ൑ ∑ ௝௝∈஽೔ߠ .

Following the same example, if ߠ௜ ൐ 0 (active), then at least 
one of ݆’s in ܦ௜ has ߠ௝ ൐ 0 (active).

32



Three-level fractional factorial designs:
Seat belt experiment

• An experiment to study the effect of four factors on the 
pull strength of truck seat belts

• 27 runs were conducted; each one was replicated three 
times

33

Design matrix and response data, 
seat-belt experiment (first 14 runs)

• a 34-1 design with I=ABCD, D=ABC, etc.

34



Design matrix and response data, 
seat-belt experiment (next 13 runs)

35

ANOVA analysis result

• Based on the p values, A, C and D are 
significant.

• Also two aliased sets of effects are 
significant, AB=CD2 and AC=BD2 , but
– aliased interaction components cannot be 

de-aliased,
– meaning of AB, AC, etc.?

36



Orthogonal components (OC) system: 
decomposition of A×B interaction

• A×B has 4 degrees of freedom; it has two component 
denoted by AB and AB2, each having 2 df’s;  

• Let the levels of A and B be denoted by x1 and x2
respectively;

• AB represents the contrasts whose x1 and x2 satisfy 
x1+x2=0, 1, 2 (mod 3); the other interaction component
AB2   is similarly defined. All components are 
orthogonal to each other, thus the name OC
system. 

• Note: this is the classical and prevailing approach 
but it is deficient. 
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Representation of AB and AB2

in a Latin Square
• Factor A and B combinations (x1 level of A, x2 

levels of B) 

• α, β, γ correspond to (x1, x2) with x1+x2=0, 1, 
2(mod 3) resp. Their SS is AB. 

• i, j, k correspond to (x1, x2) with x1+2x2=0, 1, 2(mod 
3) resp.  Their SS is AB2. 

• Difficult to interpret the meaning of significance of 
AB or AB2 .
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A reparametrization: 
linear-quadratic (LQ) system

• The 2 df’s in a quantitative factor, say A, can be 
decomposed into the linear and quadratic 
components. Letting y0, y1 and y2 represent the 
observations at level 0, 1 and 2, the linear effect is 
defined as                                          y2-y0

and the quadratic effect as (y2+y0)-2y1

which is the difference between two consecutive 
linear effects (y2-y1)-(y1-y0)

• The linear and quadratic effects are represented 
by two mutually orthogonal vectors: 
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Interactions in linear-quadratic system
• The 4 df’s in A×B can be decomposed into four mutually 

orthogonal terms:
(AB)ll, (AB)lq, (AB)ql, (AB)qq, which are defined as follows: 
for i, j = 0, 1, 2, 

• They are called the linear-by-linear, linear-by-quadratic, 
quadratic-by-linear and quadratic-by-quadratic
interaction effects, and denoted as l×l, l×q, q×l and q×q
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Designs with resolution III and IV
• In traditional wisdom, interactions in III or IV designs are not 

estimable. A more elaborate analysis method is required to 
extract the maximum amount of information from data.

• Consider the 33-1 design with C=AB, whose design matrix is 
given below

• Its main effects and two-factor interactions have the aliasing 
relations:

A=BC2, B=AC2, C=AB, AB2=BC=AC
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Analysis of designs with resolution III

• In addition to estimating the 6 df’s in A, B and C, there are 2 df’s left 
for estimating the three aliased effects AB2, BC and AC.

• Instead, consider using the remaining 2 df’s to estimate any pair of 
the l×l, l×q, q×l or q×q effects between A, B and C.

• Suppose that the two interaction effects taken are (AB)ll and (AB)lq. 
Then the 8 df’s can be represented by the following model matrix:
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Analysis of designs with resolution III(contd)
• Because any component of A×B is orthogonal to A and 

to B, there are only four non-orthogonal pairs of columns 
whose correlations are:        or

• Because the last four columns in the matrix are non-
orthogonal, they can’t be estimated with full efficiency.            
However, non-orthogonality is the saving grace 
because it leads to estimability.

• The estimability of (AB)ll and (AB)lq demonstrates an 
advantage of LQ system over OC system. The AB
interaction component cannot be estimated because it is 
aliased with C. (Further theory using indicator functions 
in Sabbaghi-Dasgupta-Wu, 2014). 
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Variable selection strategy
1. For a quantitative factor, say A, use Al and Aq for the 

A main effect.
2. For a qualitative factor, say D, select two contrasts 

from D01, D02 and D12 for the D main effect.
3. For X and Y, use the products of the two contrasts of 

X and the two contrasts of Y to represent the 4 df’s in 
X×Y.

4. Using the contrasts in 1-3 as candidate variables, 
perform a stepwise regression or subset selection 
procedure to identify a suitable model. Use effect 
heredity principle to rule out incompatible models.
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Analysis of seat-belt experiment
• Using these 39 contrasts as the candidate variables, 

variable selection led to the following model with 
R2=0.811:

• This model obeys effect heredity. A, B, C and D and 
A×B, A×C and C×D are significant. And each of the 
three interaction components is interpretable. In 
contrast, the ANOVA analysis identified A, C and D and 
the AC(=BD2) and AB(=CD2) interaction components as 
significant.
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What have we learned 
for 3-level designs?

• ANOVA analysis is inadequate; the proposed 
strategy can extract information on interactions 
even for resolution III and IV designs; this casts in 
doubt the use of “resolution” (Box-Hunter, 1961) in 
choosing designs .

• Prevailing advice on using resolution V designs for 
3-level experiments is too conservative and
misguided. 

• The linear-quadratic parametrization creates    
non-orthogonality, the key to its success. 

• Materials first available in chapter 6 of Wu-
Hamada book (2000, 2009), not in any papers. 
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Use of conditional main effects 
(cme’s) for variable selection

• Interpretability of cme’s also 
makes it a useful tool for variable 
selection in observational studies.

• cme’s provide intuitive basis 
functions for many applications:
– Genome markers: 

• A|B+ indicates gene A is active only 
when gene B is active;

– Clinical trials: 
• A|B+ indicates drug A is effective only 

when drug B is used.
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Two distinctions from designed 
experiments
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1. Orthogonal framework never occurs in 
observational data:
• Initial groupings of twin, sibling and family effects 

motivated from an orthogonal model.
• New groupings needed to capture effect 

correlations in the non-orthogonal setting.
2. Goal not to disentangle aliased effects, but 

to separate active effects from correlated
groups of inert effects:
• Bi-level selection is needed which performs 

between-group and within-group effect selection.



New effect groupings
• Main effect (me) pairs:

– e.g., A and B
• Inverse pairs:

– A cme pair with parent and conditioned effects swapped
– e.g., A|B+ and B|A+

• Parent-child pairs:
– A cme and its parent effect
– e.g., A and A|B+

• Uncle-nephew pairs:
– A cme and its conditioned effect
– e.g., B and A|B+
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Bi-level CME selection
min
ఉ
	ܳ ߚ ≡

1
2
࢟| െ ߚࢄ |ଶ ൅෍ ෍ ௢݂ ෍ ௜݂ሺߚ௞ሻ

௞∈௚௚∈࣡࣡∈ॳ

• Observations , model matrix , coefficients .

• Effect group , collection of effect groups , set of 
all collections :
– e.g., one group of siblings, collection of sibling groups, etc.

• Outer penalty ௢:
– Controls between-group selection (e.g., selecting sibling 

groups); allows for effect coupling.
• Inner penalty ௜:

– Controls within-group selection (e.g., selecting within a 
sibling group).
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Effect coupling
• Effect coupling: selecting an effect in group 

allows other effects in to enter the model more 
easily.

• This is intuitive for cme’s:
– If A|B+ is active, then its siblings A|C+, A|D+, … are 

more likely to be active.
– When many sibling pairs are in the model, the 

criterion encourages the selection of their parent 
effect instead.

− Full paper in Mak and Wu (2016).
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A historical perspective
• I had the basic ideas of conditional main effect 

(cme) analysis in 1988 but did not fully realize its 
implications. The 2011 Fisher lecture gave me the 
courage and opportunity to develop and publish it. 
This last piece also benefited from the new 
perspectives I got from the 1993 and 2000 work.  

• Hamada-Wu (1993) showed some interactions in 2-
level nonregular designs can be estimated. 

• Inference about interactions for 3-level fractional 
factorial designs using the linear-quadratic system 
followed naturally from the 1993 work; first 
appeared in the 2000 WH book.

• Common thread: non-orthogonality in the 
parametrization. 
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Common theme: reparametrization
and non-orthogonality

• 2-level regular FFD: use conditional main  effect
as the new parametrization, which induces non-
orthogonality among some effects. 

• 2-level nonregular FFD: nonregularity is the 
inherent property of these designs, which leads 
to non-orthogonality.

• 3-level regular FFD: regular designs (i.e., OC 
system) are orthogonal, no hope! The linear-
quadratic system gives the new parametrization 
and non-orthogonality.
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Further remarks
• CME’s provide a class of new basis functions in  

bi-level variable selection, ongoing work. Potential 
impact outside physical experiments, e.g., in 
medical and social studies.

• Need design-theoretic work to give more 
fundamental understanding on how and why the 
new CME analysis method works (Sabbaghi, 
2016,  using theory of indicator functions).

• The work collectively serve as a transition from 
orthogonal experiments to non-orthogonal
experiments/studies like optimal designs or 
observational studies. Potential impact in big 
data. Need further exploration. 
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