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ABSTRACT
We propose a method of ICA for separating convolu-
tive mixtures of acoustic signals. The acoustic signals
recorded in a real environment are not instantaneous
but convolutive mixtures, because of the delay and the
reflections. In order to separate these signals, it is ef-
fective to transform the signals into time-frequency do-
main. The difficult point in these approaches is the
ambiguity of the permutation and amplitude which is
unavoidable in original ICA problem. Since the ba-
sic ICA approaches cannot solve these ambiguity, we
need another approach to solve them. We employed
the envelopes of the signals to solve it, and have de-
veloped some algorithms. In this article, we show the
outline of our orignal method, and some extensions of
it. They are, the on-line version and auditory scene
analysis problem.

1. INTRODUCTION

One of the good applications of ICA is separating
acoustic signals recorded in a real environment. This
problem is well known as the name, “cocktail party
problem”. What is difficult for these problems is that
the signals include delays and reflections(Fig.1).
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Figure 1: The problem: Convolutive Mixtures

In order to solve this problem, there are some ap-
proaches, and one of them is to use decorrelation al-
gorithm [3]. In the algorithm, they approximate the

process from the sources to the microphones with FIR
filters, and make the inverse filters of those processes
to separate the sources. But those algorithms usually
takes a lot of times for the calculation, and since they
try to use the inverse filters which is also approximated
with FIR filters, the impulse response of those inverse
filters are usually long and resulting signals are dis-
torted.

In this article, we propose a method based on the
windowed-Fourier transform, which is known as the
name of spectrogram. If the effect of the delays and
the reflections are not too long, we can ignore these
convolutions by applying the windowed-Fourier trans-
form. But if we use the windowed-Fourier transform
new problems occur, in most of the ICA approaches,
they usually ignore the ambiguities of the amplitude
and the permutation. We have to remove these ambi-
guities in order to reconstruct the signals. Our idea is
to use the inverse of the decorrelating matrices and the
envelope of the speech signal. This is possible because
of the temporal structure of the acoustic signals that it
is stationary for a short period but not stationary for
a long term[5]. We use this time structure to build an
algorithm. There are also some other approaches based
on the time-frequency domain [6, 10].

We show the basic idea of the algorithm in Section
2, and show some variations in Section 3. We show two
variations, one is the on-line algorithm, and the other is
separating the single channel recorded sound in which
two source are recorded. This problem is equivalent to
the one which is dealt in the auditory scene analysis.

2. PROPOSED METHOD

First, we give a formulation of the problem. Source
signals are denoted by a vector

s(t) = (s1(t), · · · , sn(t))T , t = 0, 1, 2, . . . . (1)

We assume that each component of s(t) is independent
of each other and zero mean. When the signals are



recorded in a real environment, the observations can
be approximated with convolutive mixtures of source
signals,

x(t) = A ∗ s(t) =

(∑
k

aik ∗ sk(t)

)
,

aik ∗ sk(t) =
τmax∑
τ=0

aik(τ)sk(t − τ),

(2)

where A(t) is a function of time, aik(t) is the impulse
response of the process from source signal k to sen-
sor i, and aik ∗ sk(t) is the convolution of aik(t) and
sk(t). The goal of ICA is to separate signals into the
components which are mutually independent without
knowing operator A and source signals s(t).

If we apply Fourier transform, (2) can be written
as,

x̂(ω) = Â(ω)ŝ(ω) (3)

where, x̂(ω), Â(ω) and ŝ(ω) are Fourier transform of
x(t), A(t) and s(t) respectively. It is said that the
human voice is stationary for a period shorter than
a few 10msecs[5]. If it is longer than a few 10msecs
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Figure 2: The windowed-Fourier transform

and around 100msec, the frequency components of the
speech will change its structure, and it is not stationary.
From this fact, if the delay and the reflections are not
too long, we can approximate the relationship between
the sources and the signals with the windowed-Fourier
transform as,

x̂(ω, ts) = Â(ω)ŝ(ω, ts), (4)

where x̂(ω, ts) and ŝ(ω, ts) are the windowed-Fourier
transform of x(t) and s(t). The windowed-Fourier
transform is defined as,

x̂(ω, ts) =
∑

t

e−jωtx(t)w(t − ts),

ω = 0, 1
N 2π, . . . , N−1

N 2π, ts = 0, ∆T, 2∆T, . . .

(5)

where ω denotes the frequency and N denotes the num-
ber of points of the discrete Fourier transform, ts de-
notes the window position, w is a window function (we

used Hamming window) and ∆T is the shifting inter-
val of moving windows. Let us redefine x̂(ω, ts) and
ŝ(ω, ts) for a fixed frequency ω as x̂ω(ts) and ω as
ŝω(ts)(see Fig.2). Equation (4) can be rewritten as
x̂ω(ts) = Â(ω)ŝω(ts) and it shows that convolutive
mixtures are simply an instantaneous mixture for a
fixed ω. Therefore we can apply any ICA algorithm for
each frequency and separate the signals. As the result,
we have a separated time sequence for each frequency,

ûω(ts) = B(ω)x̂ω(ts).

It seems natural that we can reconstruct the separated
signals by aligning these ûω(ts) obtained for each fre-
quency and apply the inverse Fourier transform. How-
ever, two problems arise. Since ICA algorithms can-
not solve the ambiguity of amplitude and permutation,
even if we put each component of ûω(ts) along with ω,
amplitudes are irregular for each frequency and differ-
ent independent sources will be mixed up. We show
how to solve those two problems in the following two
subsections.

2.1. Removing the ambiguity of amplitude

The problem of irregular amplitude can be solved by
putting back the separated independent components to
the sensor input with the inverse matrices B(ω)−1. Let
us define v̂ω(ts; i) as,

v̂ω(ts; i) = B(ω)−1(0 . . . 0, ûi,ω(ts), 0 . . . 0)T ,

i = 1, . . . , n

where v̂k,ω(ts; i) represents the input of the i-th in-
dependent component of ûω(ts) into the k-th (k =
1, . . . , n) sensor. We applied B(ω) and B(ω)−1 to ob-
tain v̂ω(ts; i), therefore v̂ω(ts; i) has no ambiguity of
amplitude. v̂ω(ts; i) is an n dimensional vector, and
i changes from i to n, therefore, we have n × n sig-
nals. v̂ω,j(ts; i) correspond to estimated input of the
i-th source in the j-th sensor. In our experiment, we
use two sources and two microphone, and the result of
the each experiment has four outputs.

2.2. Removing the ambiguity of permutation

Remaining problem is permutation indeterminateness.
We assumed that even for different frequencies, if the
original source is the same, the envelopes are similar,
and utilize this idea for solving the permutation. We
define the envelope with an operator E as,

E v̂ω(ts; i) =
1

2M

ts+M∑
t′s=ts−M

n∑
k=1

|v̂k,ω(t′s; i)|, (6)
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Figure 3: Solving the permutation ambiguity

where M is a positive constant and v̂k,ω(ts; i) denotes
the k-th element of v̂ω(ts; i). And we defined the simi-
larity among all the envelopes in the same frequencies
by,

sim(ω) =
∑
i �=k

E v̂ω(i) · Ev̂ω(k)
‖E v̂ω(i)‖‖E v̂ω(k)‖ . (7)

where the inner product and norm are defined as

E v̂ω(i) · Ev̂ω′(k) =
∑
ts

E v̂ω(ts; i)E v̂ω′(ts; k), (8)

‖Evω(i)‖ =
√
E v̂ω(i) · Ev̂ω(i), (9)

Based on the similarities of independent components
in different frequencies measured with these opera-
tions, components are properly classified and the per-
mutation is solved. The procedure is, to find a per-
mutation σω(i) which maximizes correlation between
E v̂ω(ts; σω(i)) and Eŷ(ts; i) = E∑ω′ v̂ω′(ts; σω′(i)) in-
ductively (see Figure 3). For the details, see [4]. As a
result of solving the permutation, we obtain separated
spectrograms as ŷω(ts; i). Applying inverse Fourier
transform, finally we get a set of separated sources

y(t; i) =
1
2π

· 1
W (t)

∑
ts

∑
ω

ejω(t−ts)ŷω(ts; i),

i = 1, . . . , n

where W (t) =
∑

ts
w(t − ts). Note that each yk(t; i)

represents a separated independent component i on

sensor k, and
∑

i y(t; i) = x(t) holds. And finally we
obtain n × n signals from n dimensional inputs.
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Figure 4: The source signals: each signal was spoken
by a different male and recorded with sampling rate of
16kHz. s1(t) is a word of “good morning” and s2(t) is
a Japanese word “konbanwa”.

It is natural to ask a practical question, “Is it re-
ally necessary to solve the permutation?”. In order to
answer this question, we show an example.
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Figure 5: Virtual room for making convolutive mix-
tures: unit for the length is meter. The strength of the
reflection is 0.1 in power for any frequency.
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Figure 6: The inputs: Convolutive Mixtures

Figure 4 is the sources recorded separately. We have
built a virtual room (Fig.5) in a computer and put
microphones and sources in the room. Then mixed
the signals on the computer. These mixed signals are
shown in Fig.6. These signals are convolutive mixtures.



We separated these mixtures with the proposed
algorithm. We applied the windowed-Fourier trans-
form, and applied the separating algorithm (in this
case we used the method proposed by Molgedey and
Schuster[7]).
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Figure 7: The spectrogram of sources

Figure 7 shows the spectrogram of one of the sources
in Fig.4. On the top of the figure, whole spectrogram
is shown and a part of it is zoomed up in the bottom.
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Figure 8: The separated signals including permutation
errors

First, we applied our algorithm without solving the
permutation ambiguity. One of the resulting spectro-
gram and the signals are shown in Fig.8. It is clear

in the zoomed up figure that there are some discon-
tinuity. In Fig.9, we show the spectrogram and the
signals when the permutation ambiguity was solved.
The spectrogram is more natural and smoother. From
these results, it is clear that the permutation problem
can occur, and we have to deal with it carefully.
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Figure 9: The separated signals

3. VARIATIONS

3.1. Online algorithm

For extracting independent components from the
mixed signals in each frequency channel, we use a re-
current neural network architecture [7, 2], in which the
output vector is described as

û(ω, ts) = x̂(ω, ts) − B(ω, ts)û(ω, ts),

where B(ω, ts) is a matrix, whose ij element is a con-
nection from the j-th component of output û(ω, ts)
to the i-th component of input x̂(ω, ts) and whose
diagonal elements are fixed to 0, that means there
is no self-recurrent connection in the network. Since
û(ω, ts) = (B(ω, ts) + I)−1x̂(ω, ts), the source signals
are completely extracted when A(ω) = I + B(ω, ts),
where I is the identity matrix.

In the experiment described below, we adopt the
following learning rule (see [1] for derivation of the al-



gorithm and its stability analysis),

B(ω, ts + ∆T ) = B(ω, ts)
− η (B(ω, ts) + I) (diag (φ(z)z∗) − φ(z)z∗) ,

z = û(ω, ts) (10)

where diag(·) makes a diagonal matrix with the diag-
onal elements of its argument, ∗ denotes complex con-
jugate, and

φ(z) = tanh(Re(z)) + i · tanh(Im(z)) (11)

which operates component-wise to a column vector [10].
With using estimated matrix B(ω, ts)+I and one inde-
pendent component we obtain separated independent
components of observation in each frequency as

v̂ω(ts; i) = (B(ω, ts) + I)(0, . . . , ûi(ω, ts), . . . , 0)T .
(12)

As described in the last section, because of in-
herent indeterminacy of ICA problem, correspondence
of v̂ω(ts; i) with another frequency is ambiguous. In
our approach, individually separated frequency compo-
nents are combined again based on the common tempo-
ral structure of original source signals. The procedure
is the same as what we used in the last section. For
more detailed explanation about the practical imple-
mentation, see [4, 8, 9]. We heard the results, and they
are separated clearly.
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Figure 10: Inputs

3.2. Separating single input

We show another variation of our approach. The prob-
lem in this subsection is to separate a single channel
input which include two sources. This is equivalent to
what is dealt with in the auditory scene analysis. In
this experiment the input x(t) which is shown in Fig.12
is mixed on the computer using the signals in Fig.5.

Basically, we have only one input, and it seems to
be impossible to separate it into two signals. Theo-
retically, it is true, but we make an assumption here
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Figure 11: Outputs of the online algorithm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

 Time(sec)

 x(t)

Figure 12: Inputs: x(t) = 0.5s1(t) + 0.5s2(t), where,
s1(t) and s2(t) are the same as those in Fig.5.

that, (
xω(ts)

xω+δω(ts)

)
� A(ω, ts)

(
s1(ω, ts)
s2(ω, ts)

)
. (13)

This assumption means that the time-frequency com-
ponent xω(ts) and another component of its successive
frequency ω + δω can be approximated with the linear
mixture of the source signals’ time-frequency compo-
nent si(ω, ts). The assumption cannot be true, however
from the continuity of the spectrogram in the direction
of the successive frequency may support this approx-
imation. Under this assumption, we can apply ICA
algorithm.
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Figure 13: Results of the single input problem

It is said that A(ω, ts) is changing its structure with



around 100msec. This means, the frequency structures
of the signals are changing with around 100msec. In
order to solve the separation problem of these signals,
we have three possible solutions. One is to use a batch
learning algorithm and one of the other is to use an
on-line algorithm. Also we have another possibility of
using a hybrid of these two algorithms. In this type
of approach, batch learning is applied with shifting the
time little by little. We used this hybrid approach. The
signals was sliced into 0.3sec with the overlap of 0.2sec,
and applied batch algorithm shown in section 2. The
result is shown in Fig.13. From the graph, it seems
that the sources are separated, but there still a great
room for improvement.

4. CONCLUSION

It is well-known that humans ears are doing a kind of
time-frequency analysis with cochlea. From this evi-
dence, it is plausible to use the time-frequency analysis
for sounds in natural environments(such as music and
speech). We have applied the ICA algorithm in the
time-frequency domain, and showed its possibility. We
also showed the inherent problem of ICA which makes
a great problem in the case of time-frequency analysis.

Although this time-frequency approach has been
pointed out before [6, 10], the permutation problem
was not dealt with deeply in their approaches. This
is because they are rather minor effect in the practi-
cal problems. In the on-line algorithm, they usually
use a special parameterization as shown in (10), and in
our modified approach of decorrelation algorithm[7, 9],
the source are sorted in the order of its power in each
frequency. These alignment which is usually not con-
sidered deeply, will effect on the permutation problem.
But if the environment is rather complex, we have to
take the permutation problem into account.

We have shown some variations of the algorithms.
For the case of on-line algorithm, we are working on
its implementation with a hardware, and for the single
input problem, we are working for better parameteri-
zation and its implementation. We also think that it is
possibility of combining this basic time-frequency ap-
proach with other techniques.
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