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1 Introduction

1.1 Multilinear forms in statistical inference

In this paper we study distribution theory of multilinear forms. Here we briefly mention

various uses of multilinear forms in statistics and the relevance of our results to these

applications. More detailed discussions of these applications are given in Section 2.

In the traditional ANOVA setting multilinear forms are used to model higher order

interactions. For the I×J two-way layout Johnson and Graybill (1972) proposed to model

the interaction by a bilinear form: φuivj, i = 1, . . . , I, j = 1, . . . , J , where φ is a scalar.

Their method was extended to a multiway layout by Boik and Marasinghe (1989). In a

three-way layout, for example, they proposed the trilinear structure φuivjwk as a model

for interaction of the highest degree. Modeling of higher order interaction by this form

is attractive because of its simplicity. For statistical inference it is important to test

the null hypothesis H0 : φ = 0. The distribution theory for testing this hypothesis

shall be provided by our results on multilinear forms. More general models of this type

for multiway data are applied mainly in the field of psychometrics and chemometrics.

However appropriate distribution theory is lacking and at present these models are used

for descriptive purposes only. The results of this paper will be of basic importance for

statistical inference with these models.

Another important multilinear structure is mixed cumulants of a random vector. For

example consider the third cumulant cum(u′x, v′x,w′x) =
∑
uivjwk cum(xi, xj, xk) of a

random vector x = (xi). Multilinearity is the basic property of cumulants. Note that

this is a symmetric multilinear form since cum(xi, xj, xk) is permutation invariant with

respect to the indices. From the distributional point of view it is important to test the

multiple hypotheses that cum(u′x, v′x,w′x) = 0 for all u, v, w. A natural test statistic is

the maximum of sample cumulants with respect to u, v, w normalized so that u′x, v′x,w′x
have unit variances. This statistic is shown to coincide with the test statistic for mul-

tivariate normality by Malkovich and Afifi (1973). Our results on symmetric multilinear

form provide satisfactory distribution theory for this type of statistic.

1.2 The problems

Here we present the canonical forms of the statistics studied in this paper. Let Z =

(zj1···jk), ji = 1, . . . , qi, i = 1, . . . , k, be a k-way random array whose components are

distributed independently according to the standard normal distribution N(0, 1). Let

hi = (hi1, . . . , hiqi)
′ ∈ Rqi, i = 1, . . . , k, be coefficient vectors and consider a multilinear

form of degree k, or k-linear form defined by

gk(h1, . . . , hk;Z) =
q1∑
j1=1

· · ·
qk∑
jk=1

h1j1 · · ·hkjkzj1...jk
= (h1 ⊗ · · · ⊗ hk)

′z, (1.1)
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where ⊗ denotes the Kronecker product and z = vec(Z) = (z11...1, z11...2, . . . , zq1q2...qk
)′

is the (
∏k
i=1 qi)-dimensional column vector consisting of the components of Z by the

lexicographic ordering. We first consider the maximum of the k-linear form under the

condition ‖hi‖ = 1 for any i, i.e.,

Tk = max
‖hi‖=1, ∀i

gk(h1, . . . , hk;Z), (1.2)

and its standardized statistic

Uk = Tk/‖z‖ = max
‖hi‖=1, ∀i

gk(h1, . . . , hk;Y ), (1.3)

where ‖ · ‖ denotes the usual Euclidean norm and Y = Z/‖z‖ = (zj1···jk/‖z‖). Note

that for the purpose of maximization the constraint ‖hi‖ = 1, ∀i, in (1.2) and (1.3) is

equivalent to the constraint ‖h1 ⊗ · · · ⊗ hk‖ = 1, because gk is linear in each hi. Tk ≥ 0

and 0 ≤ Uk ≤ 1 since ‖h1 ⊗ · · · ⊗ hk‖ = ∏i ‖hi‖ = 1.

Second, by imposing the additional condition that q1 = · · · = qk (= q, say), we

consider the symmetric k-linear form, gk(h1, . . . , hk; sym(Z)), where sym(Z) is the k-way

array with (j1, . . . , jk)-th component

1

k!

∑
π∈Sk

zjπ(1)···jπ(k)
,

and Sk denotes the set of permutations of {1, . . . , k}. The corresponding maxima are

T̃k = max
‖hi‖=1, ∀i

gk(h1, . . . , hk; sym(Z)), (1.4)

and its standardization

Ũk = T̃k/‖z‖. (1.5)

Here the maximum in (1.4) is attained when h1 ⊗ · · · ⊗ hk = ±(h ⊗ · · · ⊗ h) for some

h ∈ Rq. This is because gk(h1, h2, h3, . . . , hk; sym(Z)) is a symmetric bilinear form in h1

and h2 for fixed h3, . . . , hk, and hence its maximum is attained when h1 = h2 or h1 = −h2.

Therefore we have

T̃k = max
‖h‖=1

{±g̃k(h;Z)} (1.6)

where h = (h1, . . . , hq)
′ ∈ Rq and

g̃k(h;Z) = gk(h, . . . , h;Z) = (h⊗ · · · ⊗ h︸ ︷︷ ︸
k

)′z. (1.7)

Note that T̃k ≥ 0 and 0 ≤ Ũk ≤ 1.

The primary purpose of this paper is to give some explicit formulas for the upper

tail probabilities for Tk, T̃k, and their standardization Uk, Ũk. More precisely, we shall

give asymptotic series for P (Tk ≥ a) and P (T̃k ≥ a) when a is large, and expressions
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for P (Uk ≥ a) and P (Ũk ≥ a) which hold exactly when the a’s are greater than suitable

constants.

When k = 2, the k-way array becomes a q1×q2 random matrix Z = (zj1j2), and some of

the statistics introduced above were studied in the conventional framework of multivariate

analysis. On the other hand for k ≥ 3, except for Monte Carlo simulation results have not

been obtained. We summarize the facts about the case k = 2 here. Since T2 is the largest

singular value of Z, the squared statistic T 2
2 is the largest eigenvalue λ1(Z

′Z) of the q2×q2
matrix Z ′Z (or λ1(ZZ

′) of the q1 × q1 matrix ZZ
′), where Z ′Z is distributed according to

the Wishart distribution W (Iq2, q1). When the parameter matrix of the Wishart matrix

is the identity (i.e., the null case) and the matrix size is not large, the distribution of the

largest eigenvalue can be obtained in principle by integrating out the other eigenvalues in

the joint density of eigenvalues (e.g., Chapter 13 of Anderson (1984)). Along this line some

algorithms have been devised. See a survey paper by Pillai (1976). For the distribution

of U2
2 = λ1(Z

′Z)/tr(Z ′Z), the largest eigenvalue divided by the trace of the same Wishart

matrix, Davis (1972) proposed a method to obtain the cumulative distribution function

by inverting a Laplace transformation symbolically, and gave the explicit expressions

for min(q1, q2) = 2, 3. Using this method, Schuurmann et al. (1973) provided a table of

quantiles. The maximum T̃2 equals max{λ1(A),−λq(A)}, where λ1(A) and λq(A) are the

largest and smallest eigenvalues of the symmetric matrix A = sym(Z) = (Z+Z ′)/2. This
random matrix is also well studied because this is the limiting distribution of standardized

Wishart matrix as the degrees of freedom go to infinity. With the same technique as for the

case of a Wishart matrix, the distribution function for T̃2 can be calculated numerically.

Although these approaches enable us to evaluate the distribution functions numeri-

cally, they are applicable only when k = 2 and the size of the matrix is not too large. Our

approach shall give simple and sufficiently accurate formulas for any k.

1.3 The tube method: an integral-geometric approach

In order to derive the tail probabilities of the maxima introduced above, we employ a

geometric approach. Around sixty years ago, in order to give a significance level of a

likelihood ratio test in a certain non-linear regression model, Hotelling (1939) defined the

one-dimensional tubes in the Euclidean space and the unit sphere, and derived formulas

for the volume of tubes. Hotelling’s tube formula was immediately generalized to general

dimensional cases by Weyl (1939). For the history and applications to statistics, see

Knowles and Siegmund (1989). More recently, Sun (1993) has developed a general theory

of the tail probability of the maximum of a Gaussian random field with a Karhunen-Loève

expansion which is not necessarily finite. Sun’s theory states that the tail probability is

expressed in terms of the geometric quantities which appear as the coefficients of Weyl’s

tube formula for a manifold defined by the Karhunen-Loève expansion. As we shall see

later, evaluation of the tail probabilities for the standardized maxima Uk, Ũk can be

reduced to the evaluation of the volume of tubes. Derivation of the tail probabilities for
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the non-standardized maxima Tk, T̃k are within the scope of Sun (1993). However, it is in

general difficult to give explicit expressions for all of the coefficients in Weyl’s tube formula

in each particular application. For example, Sun (1991) discussed the tail probability of

a projection pursuit index in exploratory projection pursuit, and gave only the first two

terms in integral forms. In our paper, in order to evaluate all of the coefficients in the

volume of tube, we use a tube formula represented in terms of the second fundamental

form, whereas the tube formula described in Weyl (1939) is expressed in terms of the

intrinsic curvature tensors. We believe that for evaluating the coefficients explicitly the

tube formula based on the second fundamental form is often more helpful than that based

on the curvature tensors. Indeed for our problem we will obtain all of the coefficients of

the volume of tube by integrating the second fundamental form.

The outline of this paper is as follows. In Section 2, applications of the distributions

of the maxima mentioned briefly in Section 1.1 are examined in more detail. In Section

3, we first prepare geometric tools and then give our main results on k-linear forms

and symmetric k-linear forms in Theorem 3.2 and Theorem 3.3, respectively. In the

geometric preparation we summarize the theory by Weyl (1939) and Sun (1993) in a

form comparable to the approach in our recent paper Takemura and Kuriki (1997), where

convexity was assumed. We also give a theorem to calculate the critical radius, the extreme

radius for which Weyl’s tube formula is valid. Sections 4 and 5 are devoted to discussion

of some numerical examples and to the derivation of some geometric quantities needed

for the tube formulas for k-linear forms and symmetric k-linear forms, respectively. Our

numerical examples and Monte Carlo studies demonstrate that the obtained expressions

are practical enough for calculating P -values. Some of the details on geometry and proofs

are provided in the Appendix.

2 Applications to testing hypotheses

In this section we discuss testing problems where the distributions of the maxima of

multilinear forms introduced in Section 1.2 are required for calculating their P -values.

2.1 Tests for interaction in multiway data

Let xij , i = 1, . . . , I, j = 1, . . . , J , be observed as two-way layout data without replication.

For such data Johnson and Graybill (1972) assumed a model:

xij = αi + βj + φuivj + εij, (2.1)

where αi, βj , φ, ui, and vj are unknown parameters and εij is a random error distributed

independently as N(0, σ2) with σ2 unknown. They proposed a test for interaction effects,

or non-additivity, as a likelihood ratio test for testing H0 : φ = 0. They showed that the

critical region of the likelihood ratio test is given by

λ1(Z
′Z)/tr(Z ′Z) > c (2.2)
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for some constant c, where Z = (zij) is a I × J matrix with (i, j)-th element

zij = xij − xi· − x·j + x·· ,

and λ1(Z
′Z) is the largest eigenvalue of Z ′Z. Here the dot means the arithmetic mean

with respect to the corresponding subscript, e.g., xi· = (1/J)
∑J
j=1 xij . Under the null

hypothesis H0 : φ = 0, the distribution of the likelihood ratio test statistic in (2.2) is

shown to be that of U2
2 in (1.3) with q1 = I − 1, q2 = J − 1.

As an extension of Johnson and Graybill (1972), Boik and Marasinghe (1989) consid-

ered a test for interaction in a k-way layout without replication. Their model in the case

of a three-way layout is

xijk = (αβ)ij + (αγ)ik + (βγ)jk + φuivjwk + εijk,

where εijk is distributed independently as N(0, σ2), i = 1, . . . , I, j = 1, . . . , J, k =

1, . . . , K. Here as in (2.1) the parameters (αβ)ij, (αγ)ik, (βγ)jk, φ, ui, vj , wk, and σ2

are unknown. Using this model they proposed a test for the null hypothesis H0 : φ = 0.

The critical region of the likelihood ratio test is of the form

max
‖u‖=‖v‖=‖w‖=1

(∑
i,j,k

uivjwkzijk
)2/∑

i,j,k
z2
ijk > c, (2.3)

where u = (u1, . . . , uI)
′, v = (v1, . . . , vJ)

′, and w = (w1, . . . , wK)
′ are unit vectors, and

zijk = xijk − xij· − xi·k − x·jk + xi·· + x·j· + x··k − x···

is the residual under H0. The distribution of the test statistic in (2.3) under H0 is

shown to be that of U2
3 in (1.3) with q1 = I − 1, q2 = J − 1, q3 = K − 1. Monte

Carlo studies to estimate the distribution function of U2
3 are found in Boik (1990) and

Kawasaki and Miyakawa (1996).

In a similar fashion, this method can be extended to a multiway layout of higher

order. It is easily proved that the distribution of U2
k arises as the null distribution of the

likelihood ratio test statistics for testing interaction in a k-way layout.

Remark 2.1 In the fields of psychometrics and chemometrics, three-way and higher mul-

tiway data analysis are extensively studied. The aim of this work is to extend the methods

of principal component analysis or correspondence analysis which have been successfully

developed in two-way data analysis into multiway data analysis. Leurgans and Ross (1992)

with discussion comments by three authors are helpful for surveying multiway data analy-

sis and related topics in mathematics. One of the most studied models among them is the

PARAFAC model, which is called INDSCAL in the context of multidimensional scaling,

where suitably preprocessed three-way data are modeled by a three-way array with (i, j, k)-

th cell of the structure
∑R
r=1 u

(r)
i v

(r)
j w

(r)
k . The model by Boik and Marasinghe (1989) is

a particular case of a PARAFAC model where the “rank” R is equal to one. Although
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there are quite a few papers on multiway data analysis, almost all of them are focused

only on modeling and fitting and distributional results have not been given. Our geometric

approach has the advantage that it enables us to tackle distribution theory and related

statistical inferences for multiway data analysis.

2.2 Tests for multivariate normality

Let x ∈ Rq be a random vector distributed according to a continuous distribution with

unknown mean vector µ and non-degenerate covariance matrix Σ. Let u1, . . . , uk be

vectors normalized so that u′
iΣui = 1 and hence u′

ix has a unit variance. By Roy’s

union-intersection principle, we consider the maximum of the joint cumulant

Bk = max
u′iΣui=1,∀i

cum(u′1x, . . . , u
′
kx) (2.4)

as a non-negative measure of the departure from multivariate normality. Note that (2.4)

is independent of µ and Σ, and takes the values zero when the distribution of x is a

multivariate normal. Since the joint cumulant in (2.4) is symmetric in u1, . . . , uk, the

maximum is attained when u1 = · · · = uk, or u1 = · · · = uk−1 = −uk, and hence (2.4) is

reduced to

Bk = max
u′Σu=1

|Kk(u)| = max
u∈Sq−1

|Kk(u)|
K2(u)k/2

, (2.5)

where

Kk(u) = cum(u′x, . . . , u′x︸ ︷︷ ︸
k

).

Malkovich and Afifi (1973) called B3 and B4 multivariate skewness and kurtosis, respec-

tively.

Assume that independently and identically distributed sample vectors x1, . . . , xn ∈
Rq are observed. The sample version B̂k of Bk (2.5) is obtained by replacing Kk(u)

with the sample cumulant (cumulant with respect to empirical distribution) K̂k(u) of

u′x1, . . . , u
′xn. Malkovich and Afifi (1973) proposed the tests that the hypothesis of mul-

tivariate normality is rejected when B̂3 or B̂4 are greater than some critical points. From

now on we consider the null distribution of B̂k. We can assume µ = 0 and Σ = Iq without

loss of generality.

Let C(Sq−1) be the Banach space of continuous function on the unit sphere Sq−1

endowed with the supremum norm. Let Zk(u) be a Gaussian random field in C(Sq−1)

with zero mean and covariance function E[Zk(u)Zk(v)] = k! (u′v)k. The following theorem
is an extension of Machado (1983) who only treated the cases k = 3, 4. The proof is given

in Appendix A.1.

Theorem 2.1 Let x1, . . . , xn ∈ Rq be independently distributed according to N(0, Iq).

Then
√
nK̂k(u)/K̂2(u)

k/2 converges in distribution to the Gaussian field Zk(u) as n goes

to infinity in the space C(Sq−1).
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Here it is easily seen that Zk(u) has a representation

Zk(u) =
√
k! g̃k(u;Z),

where g̃k(u;Z) is defined in (1.7). By virtue of the continuous mapping theorem,
√
nB̂k

converges to
√
k! T̃k in distribution under the hypothesis of multivariate normality. There-

fore, we can obtain approximate critical values for B̂k from the tail probability of T̃k. In

Section 5.1 we will examine the accuracy of approximation by Monte Carlo studies.

Remark 2.2 The test by Malkovich and Afifi (1973) can be regarded as a kind of projec-

tion pursuit for searching a direction u ∈ Sq−1 of non-normality. Indeed the use of the

standardized cumulant |K̂k(u)|/K̂2(u)
k/2 as a projection pursuit index was proposed by

Huber (1985), Example 5.4. Although it has been pointed out that the standardized cumu-

lant as a projection pursuit index is too sensitive with respect to tails of the distribution

(Friedman (1987)), it still has an advantage that the approximate significance level can

be calculated via the tail probability formula given by this paper.

3 Geometric preliminaries and main results

In this section we summarize geometric tools in a form suitable for our development and

then give our main results in Theorem 3.2 and Theorem 3.3.

3.1 Distribution of the projection onto nonconvex

smooth cone

Here we summarize results mainly fromWeyl (1939), Sun (1993), and Johansen and John-

stone (1990). Furthermore by reexamining Sun’s derivation of the asymptotic expansion

of the tail probability, we give upper and lower bounds for the tail probability P (T ≥ a)

for the non-standardized maximum (such as Tk or T̃k in (1.2) or (1.4)), which are valid

for each a > 0. We provide our own simplified proofs of these results in Appendix A.3.

Let {Z(t) ∈ R | t ∈ I} be a Gaussian random field such that E[Z(t)] = 0, E[Z(t)2] = 1

with the index set I. We assume that Z(t) has a finite Karhunen-Loève expansion:

Z(t) =
p∑
i=1

φi(t)zi = φ(t)′z, t ∈ I, (3.1)

where φ(t) = (φ1(t), . . . , φp(t))
′, z = (z1, . . . , zp)

′ and zi, i = 1, . . . , p, are independent

standard normal random variables. Note that E[Z(s)Z(t)] = φ(s)′φ(t), and that ‖φ(t)‖ =
1 since E[Z(t)2] = 1. Let

M = φ(I) = {φ(t) | t ∈ I} ⊂ Sp−1.

We put some assumptions on M .
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Assumption 3.1 M is a compact C2-submanifold without boundary of dimension d in

Sp−1.

Define a closed cone K ⊂ Rp associated with M by

K =
⋃
c≥0

cM = {cφ(t) | c ≥ 0, t ∈ I}, (3.2)

which is smooth except for the origin. For z ∈ Rp let zK ∈ K denote the projection of z

onto K:

‖z − zK‖ = min
y∈K

‖z − y‖.
In

min
y∈K

‖z − y‖2 = min
r≥0, u∈M

‖z − ru‖2 = min
r≥0, u∈M

{‖z‖2 − 2r(u′z) + r2}
= min

r≥0

{
‖z‖2 − 2r

(
max
u∈M

u′z
)
+ r2

}
,

the minimum is attained when r = max{maxu∈M u′z, 0}. Since ‖y‖ = r, this implies that

‖zK‖ = max
u∈M

u′z = max
t∈I

Z(t)

unless ‖zK‖ = 0. See Figure 3.1 (left).

Note that zK exists since K is closed. zK may not be unique but ‖zK‖ and ‖z − zK‖
are uniquely determined. In Takemura and Kuriki (1997) we investigated properties of

projections onto a convex cone K. In the case of the convex cone, zK is always uniquely

determined and its distribution is nicely characterized as a χ̄2 distribution. By introducing

a cone K in (3.2) it becomes clear that the results in this section are closely related to

those in Takemura and Kuriki (1997).

For nonconvex K we need to be concerned with the uniqueness of the projection zK .

The essential notions are the tube around M and the critical radius (critical angle) of M

with respect to the geodesic distance of Sp−1. Here the geodesic distance between two

points u, v ∈ Sp−1 is given by arccos(u′v), which is the length of the part of the great

circle joining u and v.

For 0 < θ < π the tube of geodesic distance θ around M on Sp−1 is defined by

Mθ =
{
v ∈ Sp−1 | max

u∈M
u′v > cos θ

}
.

For each u ∈ M let Tu(M) denote the tangent space of M at u. Define a subset Cθ(u) of

Sp−1 by the set of points v with the geodesic distance less than θ from u and such that

the geodesic from u to v is orthogonal to Tu(M) at u. That is,

Cθ(u) = {v ∈ Sp−1 | u′v > cos θ} ∩ {u+ Tu(M)⊥},
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where Tu(M)⊥ denotes the orthogonal complement of Tu(M) in Rp. Since M is a closed

submanifold of Sp−1 without boundary we obviously have

Mθ =
⋃
u∈M

Cθ(u).

It is said thatMθ does not have self-overlap if Cθ(u), u ∈ M , are disjoint. The supremum

θc of θ for which Mθ does not have self-overlap is called the critical radius (or critical

angle) of M :

θc = sup{θ | Mθ does not have self-overlap}.
Note that the critical radius never exceeds π/2, which is attained when M = Sd

′−1 ⊂
Sp−1, d′ < p.

For determining the critical radius of M the following lemma (Proposition 4.3 of

Johansen and Johnstone (1990)) is very useful. Although Johansen and Johnstone (1990)

stated their Proposition 4.3 for the case dimM = 1 only, its statement and proof hold for

dimM = d > 1 almost verbatim and we omit the proof.

Lemma 3.1 The critical radius θc of M is given by

cot2 θc = sup
u,v∈M

1− u′Pvu
(1− u′v)2

(3.3)

where Pv is the orthogonal projection onto the tangent space Tv(K) of K of (3.2) at v.

Remark 3.1 Let

h(u, v) =

√
1− u′Pvu
1− u′v

(3.4)

be the square root of the argument of the supremum in (3.3). In Appendix A.2 we show

that h(u, v) can be defined also for u = v by taking the appropriate supremum as u → v,

and the maximum over the compact set M ×M exists and is finite. This implies that the

critical radius θc is positive under our Assumption 3.1.

Let Kθ denote the cone associated with Mθ:

Kθ =
⋃
c≥0

cMθ.

See Figure 3.1 (right). As before K denotes the cone associated with M . If z ∈ Kθc then

the projection zK of z onto K is unique. For z ∈ Kθc write

z = zK + (z − zK) = ru+ sv,

where r = ‖zK‖, s = ‖z − zK‖, and
u = zK/r ∈ M, v = (z − zK)/s ∈ Tu(K)⊥ ∩ Sp−1.

The one-to-one correspondence z ↔ (r, u, s, v) is of class C1 and Weyl (1939) derived its

Jacobian. We state the Jacobian in the following lemma.
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Lemma 3.2 Let H(u, v) denote the second fundamental form of K at u with respect to

the direction v ∈ Tu(K)⊥ ∩ Sp−1. Then

dz =
∣∣∣Id+1 +

s

r
H(u, v)

∣∣∣ rddr du sp−d−2ds dv (3.5)

where dz denotes the p-dimensional Lebesgue measure, du denotes the volume element of

M , and dv denotes the volume element of Tu(K)⊥ ∩ Sp−1 (the (p − d − 2)-dimensional

unit sphere restricted to the space Tu(K)⊥).

A simple proof of Lemma 3.2 is given in Appendix A.1 of Kuriki and Takemura (2000).

Let trjH denote the j-th trace, i.e., the j-th elementary symmetric function of the

eigenvalues of H = H(u, v). Let tr0H ≡ 1. Although Tu(K) is of dimension d + 1,

rankH(u, v) ≤ d since H(u, v) has at least one eigenvalue (principal curvature) equal to

0 with the eigenvector (principal direction) u. Therefore

∣∣∣Id+1 +
s

r
H(u, v)

∣∣∣ rd = d∑
e=0

rd−ese treH

and (3.5) can alternatively be written as

dz =
d∑
e=0

rd−esp−d−2+edr ds treH(u, v) du dv. (3.6)

Moreover as shall be explained in Appendix A.2, the principal curvatures of K at

u with respect to the principal directions orthogonal to u coincide with the principal

curvatures ofM at u. In other words H(u, v) appearing in (3.5) and (3.6) can be replaced

with the second fundamental form of M at u with respect to v.

From Lemma 3.2 the volume of Mθ, θ ≤ θc, is obtained as follows. Let

Ωd = Vol(Sd−1) =
2πd/2

Γ(d/2)

denote the total volume of Sd−1 and let B̄m,n(a) denote the upper tail probability of the

beta distribution with parameter (m,n)

B̄m,n(a) =
∫ 1

a

1

B(m,n)
ξm−1(1− ξ)n−1dξ.

Lemma 3.3 Let z ∈ Rp be distributed according to the standard multivariate normal

distribution N(0, Ip). For 0 ≤ θ ≤ θc

Vol(Mθ) = Ωp · P (z ∈ Kθ) = Ωp
d∑

e=0
e:even

wd+1−eB̄ 1
2
(d+1−e), 1

2
(p−d−1+e)(cos

2 θ),

where

wd+1−e =
1

Ωd+1−eΩp−d−1+e

∫
M

[ ∫
Tu(K)⊥∩Sp−1

treH(u, v) dv
]
du. (3.7)
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This formula was given by Weyl (1939). A simple proof is given in Appendix A.3. Note

that wd+1−e corresponds to the weight of the χ̄2 distribution for a piecewise smooth cone

given in Theorem 2.4 of Takemura and Kuriki (1997).

Now consider the tail probability of the standardized maximum statistic. Let Z(t) be

given as in (3.1) and consider

U = max
t∈I

φ(t)′z/‖z‖ = max
u∈M

u′z/‖z‖. (3.8)

Because z/‖z‖ has a uniform distribution over Sp−1, for −1 ≤ a ≤ 1

P (U ≥ a) =
1

Ωp
Vol(Mθ), θ = θ(a) = arccos(a).

If a ≥ cos θc then Vol(Mθ(a)) is given by Lemma 3.3. For convenience we state this as a

lemma.

Lemma 3.4 For a ≥ cos θc

P (U ≥ a) =
d∑

e=0
e:even

wd+1−eB̄ 1
2
(d+1−e), 1

2
(p−d−1+e)(a

2). (3.9)

Now we consider the non-standardized statistic. Let

T = max
t∈I

φ(t)′z = max
u∈M

u′z. (3.10)

Denote the density and the upper tail probability of the χ2 distribution with m degrees

of freedom by gm(a) and Ḡm(a), respectively. Furthermore for a, b > 0 define

Qm,n(a, b) =
∫ ∞

a
gm(ξ) (1− Ḡn(bξ)) dξ = Ḡm(a)−

∫ ∞

a
gm(ξ) Ḡn(bξ) dξ.

Qm,n(a, b) can be evaluated by numerical integration. It is also easy to obtain recurrence

relations among Qm,n(a, b)’s.

Now we can state the following theorem.

Theorem 3.1 Let wd+1−e be given in (3.7). For a > 0

QL(a) ≤ P (T ≥ a) ≤ QU(a),

where

QL(a) =
d∑

e=0
e:even

wd+1−eQd+1−e,p−d−1+e(a
2, tan2 θc) (3.11)

and

QU (a) = QL(a) + Ḡp(a
2(1 + tan2 θc))

(
1− Vol(Mθc)

Ωp

)
. (3.12)
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The proof is given in Appendix A.3. Furthermore it is easy to see that

QU(a)−QL(a) ≤ Ḡp(a
2(1 + tan2 θc)) = o(Ḡ1(a

2))

and

∣∣∣∣QL(a)−
d∑

e=0
e:even

wd+1−eḠd+1−e(a2)
∣∣∣∣ ≤

d∑
e=0

e:even

|wd+1−e|
∫ ∞

a2
gd+1−e(ξ) Ḡp−d−1+e(ξ tan

2 θc) dξ

≤
d∑

e=0
e:even

|wd+1−e| Ḡp(a
2(1 + tan2 θc)) = o(Ḡ1(a

2)).

As a corollary to Theorem 3.1 we have the following result by Sun (1993):

Corollary 3.1

P (T ≥ a) =
d∑

e=0
e:even

wd+1−eḠd+1−e(a2) + o(Ḡ1(a
2)) as a → ∞. (3.13)

Remark 3.2 Let linK be the intersection of all linear subspaces containing the cone

K. When linK is a proper subset of Rp, there exists a Karhunen-Loève expansion of

dimension p′ = dim(linK) < p, and p in Theorem 3.1 should be replaced with p′ so as to

improve the lower and upper bounds.

To conclude this subsection we point out a useful relationship between the coefficients

wd+1−e. Let χ(M) denote the Euler characteristic (Euler-Poincaré characteristic) of the

index set M . The next lemma follows immediately from the Gauss-Bonnet theorem.

Lemma 3.5 For d = dim(M) even,

χ(M) = 2
d∑

e=0
e:even

wd+1−e = 2(w1 + w3 + · · ·+ wd−1).

A proof is given in Appendix A.3. Note that χ(M) = 0 for d odd, since the Euler

characteristic of a closed Riemannian manifold of odd dimension is zero.

3.2 Main results

We present our main results on the tail probability of the maxima of a multilinear form

and a symmetric multilinear form in Theorem 3.2 and Theorem 3.3, respectively.
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3.2.1 Tail probability of the maximum of a multilinear form

For a multilinear form let

Mk = {h1 ⊗ · · · ⊗ hk | hi ∈ Sqi−1, i = 1, . . . , k} (3.14)

be the manifold of dimension d =
∑k
i=1(qi − 1) in Rp with p =

∏k
i=1 qi. Since ‖h1 ⊗

· · · ⊗ hk‖ =
∏k
i=1 ‖hi‖ = 1, it follows that Mk ⊂ Sp−1. It is easy to check that Mk is

a submanifold of Sp−1 satisfying Assumption 3.1. The statistics Tk and Uk in (1.2) and

(1.3) are written as

Tk = max
u∈Mk

u′z, Uk = max
u∈Mk

u′z/‖z‖,

respectively, where z is a p-dimensional column vector distributed as N(0, Ip). Then Tk
and Uk are of the form of the random variables T and U in (3.10) and (3.8) whose tail

probabilities can be derived by virtue of Lemma 3.4, Theorem 3.1, or Corollary 3.1.

In order to state the main theorem on a multilinear form, we need to introduce a

combinatorial quantity.

Definition 3.1 For non-negative integers m and d1, . . . , dk, define a non-negative integer

nk(d1, d2, . . . , dk;m) as follows. Let A = {1, . . . , d} with d =
∑k
i=1 di. Put

Ai =
{
a ∈ A

∣∣∣ ∑i−1
j=1 dj + 1 ≤ a ≤ ∑i

j=1 dj
}
, i = 1, . . . , k, (3.15)

which form a partition of A. Consider a set of m pairings

{(a1, a2), . . . , (a2m−1, a2m) | a1 < a3 < · · · < a2m−1, a1 < a2, . . . , a2m−1 < a2m} (3.16)

such that

(i) 2m indices a1, a2, . . . , a2m are distinct elements of A = {1, 2, . . . , d}.
(ii) For each pairing in (3.16), say (a2l−1, a2l), a2l−1 and a2l do not belong to the same

set of (3.15), i.e., if a2l−1 ∈ Ai and a2l ∈ Aj then i �= j.

Then nk(d1, d2, . . . , dk;m) is defined as the total number of sets (3.16) of m pairings

satisfying (i) and (ii).

A recurrence formula for calculating nk(d1, . . . , dk;m) is given in Lemma A.2 of Ap-

pendix A.4. Now we can state our result on a multilinear form. The proof is given in

Section 4.2.

Theorem 3.2 The tail probabilities of Tk in (1.2) and Uk in (1.3) for k ≥ 2 are given

by Theorem 3.1 (or Corollary 3.1) and Lemma 3.4, respectively, where d =
∑k
i=1(qi − 1),

p =
∏k
i=1 qi, and
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(i) the non-zero coefficients wd+1−e are given by

wd+1−e =
π

1
2
(k−1)∏k

i=1 Γ(
1
2
qi)

(
− 1

2

)e/2
Γ
(1
2
(d+ 1− e)

)
nk(q1 − 1, . . . , qk − 1; e/2),

e = 0, 2, . . . , [d/2]× 2, with nk given by Definition 3.1,

(ii) the critical radius θc is given by

θc = cos−1

√
2k − 2

3k − 2
.

When k = 2, n2(d1, d2;m) is the total number of m pairings of the form

{(b1, c1), . . . , (bm, cm)}, b1, . . . , bm ∈ A1, c1, . . . , cm ∈ A2.

There are
(
d1
m

)
ways of choosing m elements from A1 = {1, . . . , d1} and there are

(
d2
m

)
ways of choosing m elements from A2 = {d1 + 1, . . . , d}. Furthermore there are m! ways

of forming pairs of the 2m chosen elements. Therefore we have

n2(d1, d2;m) =

(
d1

m

)(
d2

m

)
m!.

The tail probability formula for k = 2 is summarized in terms of the Wishart distribution

as follows.

Corollary 3.2 Let W be a q × q Wishart matrix distributed as W (Iq, ν) with ν (≥ q)

degrees of freedom, and let λ1(W ) be the largest eigenvalue of W . Then the tail probabilities

P (λ1(W ) ≥ a2) and P (λ1(W )/tr(W ) ≥ a2) are given by (3.13) and (3.9), respectively,

where d = q + ν − 2, p = qν, and the non-zero coefficients wd+1−e are

wd+1−e = wq+ν−1−e

= (−1)e/2 2q+ν−2−e/2 Γ(
1
2
(q + 1)) Γ(1

2
(ν + 1)) Γ(1

2
(q + ν − 1− e))√

π Γ(q − e/2) Γ(ν − e/2) (e/2)!
(3.17)

for e = 0, 2, . . . , 2(q − 1). The critical radius is θc = π/4.

Remark 3.3 As we will see in Lemma 4.2 the Euler characteristic of M2 is χ(M2) = 2

if both q and ν is even, 0 otherwise. The Gauss-Bonnet theorem (Lemma 3.5) implies

that when ν + q is an even integer there is a relation between the coefficients wq+ν−1−e in

(3.17):
q−1∑
j=0

wq+ν−1−2j =
{
1 if q is odd,

0 if q is even.
(3.18)

Indeed, as we will prove in Appendix A.5, (3.18) holds even when ν + q is odd. (More

precisely (3.18) holds for any real number ν such that ν �= q−1, q−2, . . .) Noting this and
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the relation Ḡm(x) = 2gm(x)+Ḡm−2(x), we can rewrite the formula for the tail probability

of λ1(W ) given by Corollary 3.2 as

P (λ1(W ) ≥ x) ∼
q−2∑
j=0

w̄q+ν−1−2j gq+ν−1−2j(x) +

{
Ḡν−q+1(x) if q is odd,

0 if q is even,
(3.19)

where

w̄q+ν−1−2j = 2
j∑
i=0

wq+ν−1−2i.

Hanumara and Thompson (1968) proposed an approximate tail probability formula for

λ1(W ) by modifying Pillai’s approximation formula for the largest eigenvalue of a multi-

variate beta matrix. Their formula is shown to be reduced to our formula (3.19), although

it seems complicated at first glance. They concluded that this formula is accurate enough

for calculating significance levels, and made tables of quantiles based on it. However

Hanumara and Thompson (1968) did not give any mathematical justifications of (3.19).

We have given a justification of (3.19) as an asymptotic expansion as x goes to infinity.

3.2.2 Tail probability of the maximum of a symmetric multilinear form

We now present our result on a symmetric multilinear form. The set

M̃k = {ε h⊗ · · · ⊗ h︸ ︷︷ ︸
k

| h ∈ Sq−1, ε = ±1} (3.20)

forms a manifold of dimension d = q − 1 in Sp−1 with p = qk. As in the case of the

manifold Mk in (3.14), it is easy to check that M̃k is a submanifold of Sp−1 satisfying

Assumption 3.1. The statistics T̃k and Ũk in (1.4) and (1.5) can be written as

T̃k = max
u∈M̃k

u′z, Ũk = max
u∈M̃k

u′z/‖z‖,

respectively, where z is a p-dimensional column vector distributed as N(0, Ip). Here it is

to be noted that the representation (h ⊗ · · · ⊗ h)′z is not of minimal dimension. M̃k or

its associated cone K̃k =
⋃
c≥0 cM̃k is degenerate. It is easily proved that

dim lin(K̃k) =

(
q + k − 1

k

)

(see, e.g., Takemura (1993)). As stated in Remark 3.2 we have to be careful that the

p = qk appearing in Theorem 3.1 is replaced with p′ =
(
q+k−1
k

)
.

Theorem 3.3 The tail probabilities of T̃k in (1.4) and Ũk in (1.5) for k ≥ 2 are given by

Theorem 3.1 (or Corollary 3.1) and Lemma 3.4, respectively, where d = q−1, p =
(
q+k−1
k

)
,

and
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(i) the non-zero coefficients wd+1−e are given by

wd+1−e = wq−e = k
1
2
(q−1)

(
− k − 1

k

)e/2 Γ(1
2
(q + 1))

Γ(1
2
(q − e+ 1)) (e/2)!

,

e = 0, 2, . . . , [(q − 1)/2]× 2,

(ii) the critical radius θ̃c is given by

θ̃c = cos−1

√
2k − 2

3k − 2
.

The proof of Theorem 3.3 is given in Section 5.2.

Remark 3.4 When q is odd, the Gauss-Bonnet theorem
∑
e: even wq−e = 1 holds (see

Lemma 5.2).

4 Multilinear forms: examples and proofs

In this section we first give numerical examples for Theorem 3.2. The rest of this section

is devoted to the proof of Theorem 3.2.

4.1 Examples

4.1.1 The maximum of a bilinear form (3× 3)

Consider the statistic T2 in (1.2) with q1 = q2 = 3. Then T2 is the square root of the largest

eigenvalue of the Wishart matrix W (I3, 3). Then p = q1q2 = 9 and d = q1 + q2 − 2 = 4.

The approximate tail probability for T2 is given by Corollary 3.2 as

P (T2 ≥ x) ∼ 3Ḡ5(x
2)− 4Ḡ3(x

2) + 2Ḡ1(x
2). (4.1)

Since the critical radius is θc = π/4, the lower bound is

QL(x) = 3Q5,4(x
2, 1)− 4Q3,6(x

2, 1) + 2Q1,8(x
2, 1). (4.2)

Let Mc denote the tube of distance θc around M2. The upper bound is

QU(x) = QL(x) + Ḡ9(2x
2) (1− Vol(Mc)/Ω9), (4.3)

where

Vol(Mc)/Ω9 = 3B̄ 5
2
,2(1/2)− 4B̄ 3

2
,3(1/2) + 2B̄ 1

2
,4(1/2)

.
= 0.990.

In Figure 4.1 the approximate tail probability by (4.1), the lower and upper bounds by

(4.2) and (4.3), and the exact tail probability calculated by the Pfaffian method (Section

4.2 of Pillai (1976)) are plotted. The exact value and the upper bound are too close
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to be distinguished. We can conclude in this case that the approximation formula by

asymptotic expansion is sufficiently accurate.

Also recalling that the value of Vol(Mc)/Ωp is the maximum P -value which can be

calculated by Lemma 3.4, we can also conclude that Lemma 3.4 provides a practical

method for calculating the P -values for U2
2 .

Remark 4.1 As mentioned in Section 1.3, the original tube formula by Weyl (1939) is

represented in terms of the curvature tensor. Sun (1993) pointed out that for up to two

terms the tube formula can be written in a relatively simple form by using the scalar

curvature. Let t = (ti) be a local coordinate of the index set I, and let (gij(t)) and R(t) be

the metric tensor and the scalar curvature at t, respectively. Sun’s two-term formula for

the maxima T = maxt∈I Z(t) of the Gaussian field is

P (T ≥ x) ∼ κ0ψ0(x) + κ2ψ2(x), (4.4)

where

κ0 =
∫
I
det(gij(t))

1/2 dt1 · · · dtd = Vol(I),

κ2 =
∫
I

(R(t)
2

− d(d− 1)

2

)
det(gij(t))

1/2 dt1 · · · dtd,

ψe(x) =
Γ(1

2
(d+ 1− e))

21+e/2π(d+1)/2
Ḡd+1−e(x2).

In the following we confirm that the first two coefficients in (4.1) are obtained by (4.4).

Each element of M2 = {h1 ⊗ h2 | h1, h2 ∈ S3−1} is written as

(cos t1, sin t1 cos t2, sin t1 sin t2)⊗ (cos t3, sin t3 cos t4, sin t3 sin t4),

where 0 ≤ t1, t2, t3 ≤ π, 0 ≤ t4 < 2π. The metric tensor is (gij) = diag(1, sin2 t1, 1, sin2 t3).

Let gkl be the (k, l)-th element of the inverse matrix (gij)
−1. The non-zero elements of the

affine connections defined by

Γkij =
1

2

d∑
l=1

gkl (∂igjl + ∂jgil − ∂lgij), ∂i = ∂/∂ti,

are Γ1
22 = − cos t1 sin t1, Γ2

21 = Γ2
12 = cot t1, Γ3

44 = − cos t3 sin t3, Γ4
43 = Γ4

34 = cot t3. The

curvature tensor Rijkl and the scalar curvature R are defined by

Rijkl =
d∑

m=1

gimR
m
jkl, Rl

ijk = ∂jΓ
l
ik − ∂kΓ

l
ij +

d∑
m=1

(Γmik Γ
l
mj − Γmij Γ

l
mk),

and R =
∑d
ijkl=1 g

ikgjlRijkl. The non-zero elements of the curvature tensor are only

R2121 = R1212 = −R2112 = −R1212 = sin2 t1, R4343 = R3434 = −R4334 = −R3443 = sin2 t3,

and hence the scalar curvature is R = 4. Since the dimension is d = 4, we have κ0 = 8π2,

κ2 = −32π2, and

κ0ψ0(x) + κ2ψ2(x) = 3Ḡ5(x
2)− 4Ḡ3(x

2),

as expected.
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4.1.2 The maximum of a trilinear form (2× 2× 2)

As another example we consider the statistic T3 in (1.2) with q1 = q2 = q3 = 2. Then

p =
∏
i qi = 8 and d =

∑
i(qi − 1) = 3. Since n3(1, 1, 1; 0) = 1 and n3(1, 1, 1; 2/2) = 3, we

have w4 = π, w2 = −3π/2, and the other w’s are 0. Therefore we have

P (T3 ≥ x) ∼ πḠ4(x
2)− (3π/2)Ḡ2(x

2). (4.5)

By Theorem 3.2 the critical radius θc of M3 in (3.14) is given by cos2 θc = 4/7. Then

tan2 θc = 3/4 and the lower and upper bounds for P (T3 ≥ x) are given by

QL(x) = πQ4,4(x
2, 3/4)− (3π/2)Q2,6(x

2, 3/4) (4.6)

and

QU (x) = QL(x) + Ḡ8(7x
2/4) (1− Vol(Mc)/Ω8), (4.7)

where

Vol(Mc)/Ω8 = πB̄2,2(4/7)− (3π/2)B̄1,3(4/7)
.
= 0.866.

These three functions (4.5), (4.6), (4.7) are plotted in Figure 4.2. In contrast to the

Wishart matrix case, the exact distribution of T3 is not known. Instead, the estimated

tail probability by a Monte Carlo simulation with 100000 replications are plotted there.

We see that the asymptotic expansion (4.5) gives a fairly good approximation.

Also Vol(Mc)/Ω8 is adequately large and in this case Lemma 3.4 is practical enough

for calculating P -values for U2
3 .

4.2 Proof of Theorem 3.2

We prove here Theorem 3.2, one of the main theorems of this paper. The proof is divided

into three parts. First, the geometric quantities of Mk such as the volume element and

the second fundamental form of the manifold Mk are determined (Section 4.2.1). Second,

the coefficients wd+1−e are derived using combinatorial arguments (Section 4.2.2). Finally,
the critical radius θc of Mk is obtained by virtue of Lemma 3.1 (Section 4.2.3).

4.2.1 Volume element and second fundamental form

We introduce a local coordinate system to make calculations simple. Let ti = (ti1, . . . , ti,qi−1)
′

be a local coordinate system of Sqi−1 so that hi ∈ Sqi−1 has a representation hi = hi(ti).

Then u = h1 ⊗ · · · ⊗ hk ∈ Mk has a local representation u = φ(t), where

φ(t) = h1(t1)⊗ · · · ⊗ hk(tk)

with parameter t = (t′1, . . . , t
′
k)

′ of dimension d =
∑k
i=1(qi − 1).

Taking a derivative of φ(t) with respect to tia, we have

∂φ

∂tia
= h1 ⊗ · · · ⊗ hi−1 ⊗ ∂hi

∂tia
⊗ hi+1 ⊗ · · · ⊗ hk.
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The tangent space Tu(Mk) at u = φ(t) is spanned by

{ ∂φ
∂tia

∈ Rp
∣∣∣ i = 1, . . . , k, a = 1, . . . , qi − 1

}
,

and Tu(Kk) is spanned by Tu(Mk) and u. The (ia, jb)-th element of the metric G = G(u)

at u is given by ( ∂φ
∂tia

)′ ∂φ
∂tjb

= δij
( ∂hi
∂tia

)′ ∂hi
∂tib

= δij ḡi,ab, (4.8)

where δij is the Kronecker delta and

ḡi,ab =
( ∂hi
∂tia

)′ ∂hi
∂tib

is the (a, b)-th element of the metric Ḡi of S
qi−1 at hi = hi(ti). Therefore the metric of

Mk is given by G = diag(Ḡ1, . . . , Ḡk) with Ḡi = (ḡi,ab) a (qi − 1) × (qi − 1) matrix. The

volume element at u is

du = |G| 12
k∏
i=1

qi−1∏
a=1

dtia =
k∏
i=1

{
|Ḡi| 12

qi−1∏
a=1

dtia
}
,

which is a product of the volume elements of Sqi−1, i = 1, . . . , k.

Lemma 4.1 The volume element of Mk at u = h1⊗· · ·⊗hk is given by du =
∏k
i=1 dS

qi−1,

where dSqi−1 denotes the volume element of Sqi−1 at hi.

Here we need to be careful about the fact that Mk and S
q1−1×· · ·×Sqk−1 are not one-

to-one. Indeed h1 ⊗· · ·⊗hk is invariant under an even number of sign changes hi �→ −hi.
The multiplicity of the map gk : Sq1−1 × · · · × Sqk−1 → Mk is 2k−1, since the signs of

h1, . . . , hk−1 can be arbitrarily chosen. Noting this fact, we have the following.

Corollary 4.1 The total volume of Mk is

Vol(Mk) =
∫
Mk

du =
1

2k−1

k∏
i=1

∫
Sqi−1

dSqi−1 =
1

2k−1

k∏
i=1

Ωqi .

Sq1−1×· · ·×Sqk−1 is a 2k−1-fold covering space of the index setMk. Since χ(S
q−1) = 2

if q is odd, 0 if q is even, we have the following.

Lemma 4.2 The Euler characteristic of the index set Mk is

χ(Mk) =
k∏
i=1

χ(Sqi−1)/2k−1 =
{
2 if qi’s are all odd,

0 otherwise.
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Let Hi be a qi × (qi − 1) matrix such that (hi, Hi) is qi × qi orthogonal. Let

∂φ

∂ti
=
( ∂φ
∂ti1

, . . . ,
∂φ

∂ti,qi−1

)

be represented as a p× (qi − 1) matrix, and let

∂hi
∂ti

=
( ∂hi
∂ti1

, . . . ,
∂hi

∂ti,qi−1

)

be represented as a qi × (qi − 1) matrix. Then the columns of two p× (qi − 1) matrices

Bi = h1 ⊗ · · · ⊗ hi−1 ⊗Hi ⊗ hi+1 ⊗ · · · ⊗ hk

and
∂φ

∂ti
= h1 ⊗ · · · ⊗ hi−1 ⊗ ∂hi

∂ti
⊗ hi+1 ⊗ · · · ⊗ hk

span the same space, since h′
i(∂hi/∂ti) = 0 and rank (∂hi/∂ti) = qi − 1.

Any vector orthogonal to u = h1 ⊗ · · ·⊗ hk and the column spaces of Bi, i = 1, . . . , k,

can be written as

v = (H1 ⊗H2 ⊗ h3 ⊗ · · · ⊗ hk) e12 + (H1 ⊗ h2 ⊗H3 ⊗ h4 ⊗ · · · ⊗ hk) e13

+ · · ·+ (h1 ⊗ · · · ⊗ hk−2 ⊗Hk−1 ⊗Hk) ek−1,k

+ (H1 ⊗H2 ⊗H3 ⊗ h4 ⊗ · · · ⊗ hk) e123 + · · ·
+ · · ·
+ (H1 ⊗H2 ⊗ · · · ⊗Hk) e12···k, (4.9)

where e’s are column vectors of appropriate sizes, e.g., e12 is (q1 − 1)(q2 − 1)× 1, e123 is

(q1 − 1)(q2 − 1)(q3 − 1)× 1, e12···k is
∏k
i=1(qi − 1)× 1. Since the linear subspace spanned

by the set of vectors v in (4.9) is of dimension
∏k
i=1 qi −

∑k
i=1(qi − 1)− 1 = p− d − 1, it

coincides with Tu(Kk)
⊥.

Now taking a second derivative we have

∂2φ

∂tia∂tjb

=



h1 ⊗ · · · ⊗ hi−1 ⊗ ∂2hi

∂tia∂tjb
⊗ hi+1 ⊗ · · · ⊗ hk if i = j,

h1 ⊗ · · · ⊗ hi−1 ⊗ ∂hi
∂tia

⊗ hi+1 ⊗ · · · ⊗ hj−1 ⊗ ∂hj
∂tjb

⊗ hj+1 ⊗ · · · ⊗ hk if i < j.

Then for v in (4.9)

v′
∂2φ

∂tia∂tjb
=



0 if i = j,

e′ij
(
H ′
i

∂hi
∂tia

⊗H ′
j

∂hj
∂tjb

)
if i < j.
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For i < j let Eij be the (qi − 1) × (qj − 1) matrix defined by vec(Eij) = eij . There

exists a (qi − 1)× (qi − 1) nonsingular matrix Fi such that

∂hi
∂ti

= HiFi.

Then the d × d (d =
∑k
i=1(qi − 1)) matrix with (ia, jb)-th element v′(∂2φ/∂tia∂tjb) is a

block matrix with (i, j)-th block



O if i = j,

F ′
iEijFj if i < j,

F ′
iE

′
ijFj if i > j,

i, j = 1, . . . , k.

On the other hand, as we have seen in (4.8), the metric G of Mk can be written as a

diagonal block matrix with (i, i)-th block F ′
iFi, i = 1, . . . , k. This implies the following

lemma.

Lemma 4.3 In an appropriate coordinate system, the second fundamental form of Mk at

u with respect to the direction v in (4.9) can be written as

H(u, v) = −




O E12 E13 · · · E1k

E ′
12 O E23 · · · E2k

E ′
13 E ′

23 O · · · E3k
...

...
...

. . .
...

E ′
1k E ′

2k E ′
3k · · · O



. (4.10)

4.2.2 Evaluation of the coefficient wd+1−e

We now proceed to the evaluation of the coefficient wd+1−e in (3.7). For fixed u ∈ Mk we

first evaluate the integral ∫
Tu(Kk)⊥∩Sp−1

treH(u, v) dv, (4.11)

where dv is the volume element of Tu(Kk)
⊥∩Sp−1, the unit sphere restricted to Tu(Kk)

⊥.
We introduce a random variable and replace the integration with an expectation.

Let y ∈ Rp be a singular Gaussian vector distributed as N(0, P⊥
u ), where P

⊥
u is the

orthogonal projection matrix onto the linear subspace Tu(Kk)
⊥. Then r = ‖y‖ and

v = y/‖y‖ are independently distributed. r2 has the χ2 distribution with p−d−1 degrees

of freedom and v has the uniform distribution over Tu(Kk)
⊥∩Sp−1. Since H(u, v) is linear

in v, we have

E[treH(u, y)] = E[treH(u, rv)] = E[retreH(u, v)]

= E[re] · E[treH(u, v)]

= E[(χ2
p−d−1)

e/2] · 1

Ωp−d−1

∫
treH(u, v) dv,
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where

E[(χ2
p−d−1)

e/2] = 2e/2
Γ(1

2
(p− d− 1 + e))

Γ(1
2
(p− d− 1))

.

Hence we have a representation of the integral (4.11) as

∫
Tu(Kk)⊥∩Sp−1

treH(u, v) dv =
Ωp−d−1

E[(χ2
p−d−1)

e/2]
· E[treH(u, y)]. (4.12)

Note that the random vector y can be written as Quȳ, where Qu is a p×(p−d−1) matrix

such that QuQ
′
u = P⊥

u and ȳ is a (p − d − 1)-dimensional random vector distributed as

N(0, Ip−d−1).

Now we return to the problem of multilinear forms of degree k. As we saw, Tu(Kk)
⊥

is spanned by the vectors of the form of v in (4.9). In this parameterization, the squared

norm of v in (4.9) is

‖v‖2 =
∑

1≤i<j≤k
‖eij‖2 +

∑
1≤i<j<l≤k

‖eijl‖2 + · · ·+ ‖e12···k‖2,

which means that elements of the vectors

eij (i < j), eijl (i < j < l), . . . , e12···k

form an orthonormal basis of Tu(Kk)
⊥. If we suppose that every element of these vectors

eij , eijl, . . . , e12···k is an independent random variable distributed as N(0, 1), e.g., e12 is a

(q1 − 1)(q2 − 1)-dimensional standard multivariate normal random vector, then v defined

in (4.9) has the distribution N(0, P⊥
u ). Therefore the problem is reduced to evaluating

the expectation E[treH ] with H = H(u, v) in (4.10), where each component of Eij (i < j)

is independently distributed as N(0, 1).

Lemma 4.4 Let y be distributed as N(0, P⊥
u ). Then

E[treH(u, y)] =

{
(−1)e/2nk(q1 − 1, . . . , qk − 1; e/2) for e even,

0 for e odd,

where nk is defined in Definition 3.1.

Proof. Note first that the generalized trace treH of H can be written as

treH =
∑

A⊂{1,...,d}
card(A)=e

detH [A],

where H [A] with A = {1 ≤ a1 < · · · < ae ≤ d} denotes the e×e submatrix of H formed by

deleting all but columns and rows of H numbered a1, . . . , ae (Muirhead (1982), Appendix

A7). The cardinality of A is denoted by card(A). Consider the termwise expectation

E[detH [A]] =
∑

π∈S(A)

sgn(π)E[ha1π(a1) · · ·haeπ(ae)] (4.13)
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where S(A) is the set of permutations of the elements of A.

Since H = (hab)1≤a,b≤d is a symmetric random matrix whose diagonal and upper off-

diagonal elements are zero mean independent random variables (maybe a constant 0),

E[ha1π(a1) · · ·haeπ(ae)] = 0 unless e is even and π(a) �= a, π(π(a)) = a, ∀a. In this case

sgn(π) = (−1)e/2, and by relabeling the indices of a’s, non-vanishing terms in (4.13) can

be written uniquely as

(−1)e/2E[h2
a1a2

h2
a3a4

· · ·h2
ae−1ae

]

with a1 < a3 < · · · < am−1, a1 < a2, . . . , ae−1 < ae. Moreover ha2l−1a2l
= 0 iff

∃i,
i−1∑
j=1

(qj − 1) + 1 ≤ a2l−1 < a2l ≤
i∑

j=1

(qj − 1).

Therefore for e even we have

E[treH(u, y)] = (−1)e/2∑∗
E[h2

a1a2
h2
a3a4

· · ·h2
ae−1ae

],

where the summation
∑∗ is taken over all sets of m = e/2 pairings (3.16) satisfying (i)

and (ii) of Definition 3.1. Since the expectation in the right hand side is 1, we have proved

the lemma.

Now we proceed to integrate (4.11) with respect to du:∫
Mk

[ ∫
Tu(Kk)⊥∩Sp−1

treH(u, v) dv
]
du.

As we already saw, the integrand does not depend on u. Therefore the integration with

respect to du over Mk reduces to multiplying by a constant
∫
Mk

du = Vol(Mk) obtained

in Corollary 4.1.

Then from (4.12) the coefficient in (3.7) for Mk is

wd+1−e =
1

Ωd+1−eΩp−d−1+e
·Vol(Mk) · Ωp−d−1

E[(χ2
p−d−1)

e/2]
E[treH(u, y)]

=
Vol(Mk)

Ωd+1

· Γ(
1
2
(d+ 1− e))

2e/2 Γ(1
2
(d+ 1))

E[treH(u, y)].

Summarizing the above calculations, we obtain the proof of (i) of Theorem 3.2.

4.2.3 Critical radius

In this subsection we obtain the critical radius θc of the manifold Mk in (3.14) by virtue

of Lemma 3.1.

Fix a point v = h1⊗· · ·⊗hk ∈ Mk with hi ∈ Sqi−1. Let Hi, i = 1, . . . , k, be qi×(qi−1)

matrices such that (hi, Hi) is qi×qi orthogonal. Let Kk =
⋃
c≥0 cMk be the cone associated

with Mk. The tangent space Tv(Kk) at v is spanned by v = h1 ⊗ · · ·⊗ hk and the column

spaces of

Bi = h1 ⊗ · · · ⊗ hi−1 ⊗Hi ⊗ hi+1 ⊗ · · · ⊗ hk, i = 1, . . . , k.
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Then the orthogonal projection matrix onto Tv(Kk) is given by

Pv = vv′ +
k∑
i=1

BiB
′
i

=
k∑
i=1

h1h
′
1 ⊗ · · · ⊗ hi−1h

′
i−1 ⊗ Iqi ⊗ hi+1h

′
i+1 ⊗ · · · ⊗ hkh

′
k

−(k − 1)h1h
′
1 ⊗ · · · ⊗ hkh

′
k.

Let ṽ = h̃1 ⊗ · · · ⊗ h̃k ∈ Mk. Then ṽ′v =
∏k
i=1(h̃

′
ihi) and

ṽ′Pvṽ =
k∑
i=1

∏
j 
=i

(h̃′
jhj)

2 − (k − 1)
k∏
i=1

(h̃′
ihi)

2.

Note that both ṽ′Pvṽ and ṽ′v depend on ṽ and v through h̃′
ihi (= xi say) which takes

values −1 ≤ xi ≤ 1. Then by Lemma 3.1

cot2 θc = sup
ṽ,v∈M

1− ṽ′Pvṽ
(1− ṽ′v)2

= sup
−1<xi<1, ∀i

1−∑i

∏
j 
=i x2

j + (k − 1)
∏
i x

2
i

(1−∏i xi)
2

.

Here we take the supremum in two steps: First, take the supremum under the restric-

tion that
∏
i xi (= y, say) is fixed. Second, take the supremum with respect to−1 < y < 1.

By the inequality between the arithmetic and geometric means, we have

k∑
i=1

∏
j 
=i

x2
j ≥ k

( k∏
i=1

∏
j 
=i

x2
j

)1/k
= k |y|2(k−1)/k,

where the equality holds if and only if x2
1 = · · · = x2

k. Then we have

cot2 θc = sup
−1<y<1

1− k |y|2(k−1)/k + (k − 1)y2

(1− y)2
. (4.14)

Note that in (4.14) we can restrict y to be nonnegative. Here we give a lemma, whose

proof is given in Appendix A.6.

Lemma 4.5

sup
0≤z<1

1− kz2(k−1) + (k − 1)z2k

(1− zk)2
=

2(k − 1)

k
, (4.15)

where the supremum is attained when z ↑ 1.
Then by making a change of variable y = zk in (4.14), we have by Lemma 4.5 that

cot2 θc = 2(k − 1)/k. The proof of (ii) of Theorem 3.2 is complete.

5 Symmetric multilinear forms: examples and proofs

In this section we first give numerical examples for Theorem 3.3. Monte Carlo studies to

determine the necessary sample sizes for the asymptotic approximation of the Malkovich-

Afifi statistics are also given. The rest of this section is devoted to the proof of Theorem

3.3.
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5.1 Examples: the maxima of symmetric 3- and 4-linear forms

Consider the statistics T̃k, k = 3, 4, with q = 2. Then d = q − 1 = 1 and p′ =
(
q+k−1
k

)
=

k + 1 = 4, 5. The approximate tail probabilities are given by

P (T̃k ≥ x) ∼
√
k Ḡ2(x

2) =
√
k e−x

2/2. (5.1)

In Figure 5.1, the approximate tail probability for T̃3, the estimated tail probability by a

Monte Carlo simulation with 100000 replications, as well as the upper and lower bounds

QL(x) =
√
3Q2,2(x

2, 4/7), QU (x)
.
= QL(x) + (1− 0.742) Ḡ4(7x

2/4),

are plotted.

Moreover, we examine the convergence speed of the Malkovich-Afifi statistics. Let

x1, . . . , xn be n i.i.d. samples from the two-dimensional normal distribution N(0, I2), and

let

B̂k = max
u 
=0

∣∣∣∣∣(1/n)
∑n
i=1(u

′xi − u′µ̂)k

(u′Σ̂u)k/2
− 3 δk,4

∣∣∣∣∣, k = 3, 4,

be the Malkovich-Afifi statistics, where µ̂ = (1/n)
∑n
i=1 xi, Σ̂ = (1/n)

∑n
i=1(xi−µ̂)(xi−µ̂)′.

We estimate the type I error rates P (B̂k ≥ ck,α) by Monte Carlo simulations with 50000

replications, where ck,α is the approximate 100α% critical point of
√
k!/n T̃k based on

(5.1). The results are summarized in Table 5.1. The last row labeled “s.e.” indicates the

standard error
√
α(1− α)/50000. We see from this table that:

(i) The formulas (5.1) give fairly precise critical points for the limiting distributions T̃k,

k = 3, 4 even when α = 0.25 (see the rows n = ∞).

(ii) The convergence of B̂3 is faster than that of B̂4. Suppose that about 20% inflation

or deflation of the type I error are acceptable. Then the required sample sizes n for

B̂3 are n ∼ 50 (α ≥ 0.025), n ∼ 200 (α = 0.01), whereas for B̂4 n ∼ 100 or 500

(α ≥ 0.05), n ∼ 5000 (α = 0.025, 0.01).

5.2 Proof of Theorem 3.3

We give here a proof of Theorem 3.3. The construction of this subsection is the same as

for Section 4.2.

5.2.1 Volume element and second fundamental form

First of all, we introduce a local coordinate system for the sake of convenience of cal-

culation. Let t = (t1, . . . , tq−1)
′ be a local coordinate system of Sq−1 so that h ∈ Sq−1

has a representation h = h(t). Then u = εh ⊗ · · · ⊗ h ∈ M̃k, ε ∈ {1,−1}, has a local

representation u = ϕ(t) where

ϕ(t) = ε h(t)⊗ · · · ⊗ h(t)︸ ︷︷ ︸
k

.
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Taking a derivative of ϕ(t) with respect to ti, we have

∂ϕ

∂ti
= ε

k∑
l=1

h⊗ · · · ⊗ h︸ ︷︷ ︸
l−1

⊗∂h

∂ti
⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸

k−l
.

The tangent space Tu(M̃k) at u = ϕ(t) is spanned by

{∂ϕ
∂ti

∈ Rp
∣∣∣ i = 1, . . . , d

}
.

The tangent space Tu(K̃k) of K̃k is spanned by Tu(M̃k) and u. The (i, j)-th element of

the metric G = G(u) at u is given by

(∂ϕ
∂ti

)′ ∂ϕ
∂tj

= k
(∂h
∂ti

)′ ∂h
∂tj

= kḡij, (5.2)

where

ḡij =
(∂h
∂ti

)′ ∂h
∂tj

is the (i, j)-th element of the metric Ḡ of Sq−1 at h = h(t). Therefore we have G = kḠ,

and hence the volume element at u is

du = |G| 12
q−1∏
i=1

dti = k
1
2
(q−1)|Ḡ| 12

q−1∏
i=1

dti.

Lemma 5.1 The volume element of M̃k at u = ε h⊗ · · · ⊗ h︸ ︷︷ ︸
k

is given by

du = k
1
2
(q−1)dSq−1, where dSq−1 denotes the volume element of Sq−1 at h.

When k is even, M̃k consists of two disjoint sets M̃+
k = {h⊗ · · · ⊗ h︸ ︷︷ ︸

k

| h ∈ Sq−1}

and −M̃+
k . The multiplicity of the map g̃k : Sq−1 → M̃+

k is 2, and hence Vol(M̃k) =

2Vol(M̃+
k ) = 2 × (1/2)

∫
Sq−1 du. On the other hand when k is odd, M̃+

k = M̃k and the

multiplicity of the map g̃k is 1. Therefore the following holds in each case.

Corollary 5.1 The total volume of M̃k is

Vol(M̃k) = k
1
2
(q−1)

∫
Sq−1

dSq−1 = k
1
2
(q−1) Ωq.

By similar consideration, we get the following.

Lemma 5.2 The Euler characteristic of the index set is

χ(M̃k) = χ(Sq−1) =
{
2 if q is odd,

0 if q is even.
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Let H be a q × (q − 1) matrix such that (h,H) is q × q orthogonal. Using H , any

vector v ∈ Rp orthogonal to u = ϕ(t) can be written as

v = (H ⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸
k−1

) e1 + (h⊗H ⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸
k−2

) e2

+ · · ·+ (h⊗ · · · ⊗ h︸ ︷︷ ︸
k−1

⊗H) ek

+ (H ⊗H ⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸
k−2

) e12 + (H ⊗ h⊗H ⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸
k−3

) e13

+ · · ·+ (h⊗ · · · ⊗ h︸ ︷︷ ︸
k−2

⊗H ⊗H) ek−1,k

+ (H ⊗H ⊗H ⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸
k−3

) e123 + · · ·

+ · · ·
+ (H ⊗H ⊗ · · · ⊗H︸ ︷︷ ︸

k

) e12···k, (5.3)

where ei1···il (1 ≤ i1 < · · · < il ≤ k) is a (q − 1)l × 1 column vector.

Suppose that v ∈ Tu(K̃k)
⊥. Then it follows that

v′
∂ϕ

∂ti
= ε

k∑
l=1

e′lH
′ ∂h
∂ti

= 0.

Since the q × (q − 1) matrix
∂h

∂t
=
( ∂h
∂t1

, . . . ,
∂h

∂tq−1

)
is of rank q − 1 and its columns are orthogonal to h, it holds that

∑k
l=1 el = 0. Since the

linear subspace spanned by v in (5.3) with
∑k
l=1 el = 0 is of dimension qk − q = p− d− 1,

it coincides with Tu(K̃k)
⊥.

Now taking a second derivative we have

∂2ϕ

∂ti∂tj
= ε

k∑
l=1

h⊗ · · · ⊗ h︸ ︷︷ ︸
l−1

⊗ ∂2h

∂ti∂tj
⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸

k−l

+ε
∑

1≤l<m≤k
h⊗ · · · ⊗ h︸ ︷︷ ︸

l−1

⊗∂h

∂ti
⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸

m−l−1

⊗ ∂h

∂tj
⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸

k−m

+ε
∑

1≤l<m≤k
h⊗ · · · ⊗ h︸ ︷︷ ︸

l−1

⊗ ∂h

∂tj
⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸

m−l−1

⊗∂h

∂ti
⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸

k−m
.

Then for v in (5.3) with
∑k
l=1 el = 0

v′
∂2ϕ

∂ti∂tj
= ε

∑
1≤l<m≤k

e′lm
(
H ′ ∂h

∂ti
⊗H ′ ∂h

∂tj
+H ′ ∂h

∂tj
⊗H ′ ∂h

∂ti

)
.
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For l < m let Elm be the (q− 1)× (q− 1) matrix defined by vec(Elm) = elm. There exists

a (q − 1)× (q − 1) nonsingular matrix F such that

∂h

∂t
= HF.

It follows that v′(∂2ϕ/∂ti∂tj) is the (i, j)-th element of

εF ′{ ∑
1≤l<m≤k

(Elm + E ′
lm)

}
F.

On the other hand, as we have seen in (5.2), the metric G of M̃k can be written as

k F ′F . Therefore we have the following lemma.

Lemma 5.3 In an appropriate coordinate system, the second fundamental form of M̃k at

u with respect to the direction v in (5.3) with
∑k
l=1 el = 0 is written as

H(u, v) = − ε

k

∑
1≤l<m≤k

(Elm + E ′
lm). (5.4)

5.2.2 Derivation of the coefficient wd+1−e

Now let us proceed to the evaluation of the integral∫
Tu(K̃k)⊥∩Sp−1

treH(u, v) dv. (5.5)

As in Section 4.2 we calculate this integral by taking an expectation.

Let Rk be a k × (k − 1) matrix such that

R′
kRk = Ik−1 and 1′kRk = 0,

where 1k is a k × 1 vector consisting of 1’s. Then the q × 1 vectors e1, . . . , ek satisfying∑k
l=1 el = 0 can be reparameterized as

(e1, . . . , ek) = (ē1, . . . , ēk−1)R
′
k,

where ēi is (q − 1) × 1. Using this parameterization, the squared norm of v defined in

(5.3) with
∑k
l=1 el = 0 can be written as

‖v‖2 =
∑

1≤i≤k−1

‖ēi‖2 +
∑

1≤i<j≤k
‖eij‖2 +

∑
1≤i<j<l≤k

‖eijl‖2 + · · ·+ ‖e12···k‖2,

which means that elements of the vectors

ēi, eij (i < j), eijl (i < j < l), . . . , e12···k (5.6)
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form an orthonormal basis of Tu(K̃k)
⊥. Now suppose that every element of these vectors

(5.6) is an independent random variable distributed as N(0, 1) and take the expectation

E[treH(u, v)] with respect to v. Then the integral (5.5) can be evaluated as∫
Tu(K̃k)⊥∩Sp−1

treH(u, v) dv =
Ωp−d−1

E[(χ2
p−d−1)

e/2]
· E[treH(u, v)].

Rewrite H(u, v) in (5.4) as

H(u, v) =

√
2(k − 1)

k
Cd,

where

Cd = − ε√
2(k − 1)k

∑
1≤l<m≤k

(Elm + E ′
lm).

We have assumed that each component of Elm (l < m) is independently distributed as

N(0, 1). Cd = (cij) is a d × d symmetric random matrix whose diagonal element cii
and upper off-diagonal element cij (i < j) are distributed independently as N(0, 1) and

N(0, 1/2), respectively.

Consider

E[treH ] =
∑

A⊂{1,...,d}
card(A)=e

E[det H [A]].

For e odd E[treH ] = 0 holds because any central moment of odd degrees is 0. Now

suppose that e is even. Since H [A] is equivalent in distribution to
√
2(k − 1)/k Ce, we

have

E[treH ] =

(
d

e

){2(k − 1)

k

}e/2
E[det Ce]. (5.7)

Here for Ce = (cij)

E[det Ce] =
∑
π∈Se

sgn(π)E[c1π(1)c2π(2) · · · ceπ(e)]. (5.8)

The expectation of the right hand side of (5.8) above does not vanish if and only if π(i) �= i

and π(π(i)) = i for any i. In this case sgn(π) = (−1)e/2, and non-vanishing terms of the

right hand side of (5.8) can be written uniquely in the form

(−1)e/2E[c2i1i2c2i3i4 · · · c2ie−1ie ]

with i1 < i3 < · · · < ie−1, i1 < i2, . . . , ie−1 < ie. Counting the number of ways of forming

e/2 pairings from {1, 2, . . . , e}
{(i1, i2), (i3, i4), . . . , (ie−1, ie) | i1 < i3 < · · · < ie−1, i1 < i2, . . . , ie−1 < ie},

we have for e even that

E[det Ce] = (−1)e/2 e!

2e/2(e/2)!
(1/2)e/2.
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Hence from (5.7)

E[treH ] =
(
− k − 1

2k

)e/2 d!

(d− e)! (e/2)!
.

Now it remains to evaluate the integral∫
M̃k

[ ∫
Tu(K̃k)⊥∩Sp−1

treH(u, v) dv
]
du.

As in the case of a multilinear form in Section 4, the integrand does not depend on u,

and the integration with respect to du over M̃k reduces to multiplying by a constant∫
M̃k

du = Vol(M̃k) obtained in Corollary 5.1. Then the coefficient in (3.7) is given by

wd+1−e =
1

Ωd+1−eΩp−d−1+e
· Vol(M̃k) · Ωp−d−1

E[(χ2
p−d−1)

e/2]
E[treH(u, v)]

=
Vol(M̃k)

Ωd+1
· Γ(

1
2
(d+ 1− e))

2e/2 Γ(1
2
(d+ 1))

E[treH(u, v)].

The proof of (i) of Theorem 3.3 is complete.

5.2.3 Critical radius

We obtain here the critical radius θ̃c of the manifold M̃k in (3.20) by virtue of Lemma

3.1.

Fix a point v = εh⊗ · · · ⊗ h ∈ M̃k with h ∈ Sq−1, ε ∈ {1,−1}. Let H be a q× (q− 1)

matrix such that (h,H) is q × q orthogonal. Let K̃k =
⋃
c≥0 cM̃k be the cone associated

with M̃k. Then the tangent space Tv(K̃k) at v is spanned by v = εh ⊗ · · · ⊗ h and the

column spaces of

B = ε
k∑
l=1

h⊗ · · · ⊗ h︸ ︷︷ ︸
l−1

⊗H ⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸
k−l

.

The orthogonal projection matrix onto Tv(K̃k) is easily shown to be

Pv = vv′ +
1

k
BB′.

Let ṽ = ε̃h̃ ⊗ · · · ⊗ h̃ ∈ M̃k, h̃ ∈ Sq−1, ε̃ = ±1. Then ṽ′v = (ε̃ε)(h̃′h)k, B′ṽ =

(ε̃ε)k(h̃′h)k−1H ′h̃, and

ṽ′Pvṽ = (ṽ′v)2 +
1

k
(B′ṽ)′(B′ṽ)

= (h̃′h)2k + k(h̃′h)2(k−1)h̃′HH ′h̃

= k(h̃′h)2(k−1) − (k − 1)(h̃′h)2k.

Put x = h̃′h. Then by Lemma 3.1 we have

cot2 θc = sup
ṽ,v∈M̃k

1− ṽ′Pvṽ
(1− ṽ′v)2

= sup
−1<x<1

1− kx2(k−1) + (k − 1)x2k

(1− xk)2
=

2(k − 1)

k
.

The last equality follows from Lemma 4.5. The proof of (ii) of Theorem 3.3 is complete.
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Appendix

A.1 Proof of Theorem 2.1

Let Hk(x) = ex
2/2(−d/dx)ke−x2/2 be the Hermite polynomial of degree k. The generating

function is given by

etx−t
2/2 =

∞∑
k=0

tk

k!
Hk(x).

Let (y, z) be distributed as the two-dimensional normal distribution with zero mean and

covariance structure E[y2] = E[z2] = 1, E[yz] = ρ. We claim that

E[Hj(y)Hk(z)] = δjk k! ρ
k. (A.1)

Indeed (A.1) is proved by comparing the coefficients of sjtk of the identity:

∞∑
j=0

∞∑
k=0

sj

j!

tk

k!
E[Hj(y)Hk(z)]

= E[esy−s
2/2etz−t

2/2] = estρ =
∞∑
k=0

(st)k

k!
ρk.

From the i.i.d. sequence x1, . . . , xn ∈ Rq, define an empirical field in C(Sq−1) by

Ẑk(u) =
1√
n

n∑
i=1

Hk(u
′xi).

Then (A.1) implies immediately that the finite dimensional distributions of Ẑk(·) converge
to the corresponding finite dimensional distributions of Zk(·). Moreover we can prove

the convergence in distribution in the sense of C(Sq−1) by applying Corollary 7.17 of

Araujo and Giné (1980) as in Theorem 2.1 of Baringhaus and Henze (1991).

Thus, to complete the proof, it is sufficient to show that

sup
u∈Sq−1

|√nK̂k(u)/(u
′Σ̂u)k/2 − Ẑk(u)| = op(1).

Since Ẑk(u) = Op(1) and (u′Σ̂u)−k/2 = 1 + op(1) uniformly in u, we only have to show

that

sup
u∈Sq−1

|√nK̂k(u)− Ẑk(u)| = op(1).

We will prove this by using the generating function again.

Note first that
1√
n

n∑
i=1

et(u
′xi)−t2/2 =

∑
k≥0

tk

k!
Ẑk(u).

The left hand side of the above expression is rewritten as

√
ne−t

2/2(1/n)
n∑
i=1

et(u
′xi) =

√
n exp

(
(u′µ̂)t+ (u′Σ̂u− 1)

t2

2
+
∑
k≥3

tk

k!
K̂k(u)

)
(A.2)
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with µ̂ = (1/n)
∑n
i=1 xi and Σ̂ = (1/n)

∑n
i=1(xi − µ̂)(xi − µ̂)′, because (1/n)

∑n
i=1 e

t(u′xi) is

the empirical moment generating function of u′xi, i = 1, . . . , n. By expanding (A.2) and

comparing the coefficients of tk, we see that

Ẑk(u) =
√
nK̂k(u) +

√
nRk(u), (A.3)

where Rk(u) is a finite summation of the products of at least two of u′µ̂, u′Σ̂u − 1, or

K̂j(u), 3 ≤ j < k. (The relation (A.3) is just a well-known relation between moments

and cumulants.) Noting that Ẑk(u) = Op(1) and u′µ̂ = Op(n
−1/2), u′Σ̂u = 1 + Op(n

−1/2)

uniformly in u, we can prove by mathematical induction that K̂k(u) = Op(n
−1/2) and

Ẑk(u)−√
nK̂k(u) = Op(n

−1/2) uniformly in u. The proof is complete.

A.2 Critical radius and local radius of curvature

Here we investigate the relation between the global critical radius and the local radius

of curvature. In Section 3.1 we considered the tube of M ⊂ Sp−1 with respect to the

geodesic distance of Sp−1. For clarity and completeness of argument we first consider the

tube in Rp with respect to the ordinary Euclidean distance. It will be shown that geodesic

curvature of M is closely related to the curvature of the cone K =
⋃
c≥0 cM .

Let N be a compact C2-submanifold without boundary of dimension d in Rp. The

tube around N with radius ρ is defined as

Nρ = {y | ‖y − yN‖ < ρ}, (A.4)

where yN is the projection of y onto N . As in Section 3.1 for x ∈ N we define

Cρ(x) = {x+ y | y ∈ Tx(N)⊥, ‖y‖ < ρ}
where Tx(N)⊥ denotes the orthogonal complement of the tangent space of N at x. Then

Nρ =
⋃
x∈N Cρ(x). It is said that Nρ does not have self-overlap if Cρ(x), x ∈ N , are

disjoint. The critical radius ρc of N is defined as

ρc = sup{ρ | Nρ does not have self-overlap}.
Note that if N ⊂ Sp−1 then Nρ ∩ Sp−1 is a tube of N with respect to the geodesic

distance of Sp−1. The problem is that Nρ may have self-overlap in Rp even if Nρ ∩ Sp−1

does not have self-overlap in Sp−1. For this reason we make distinction between tube with

respect to Euclidean distance and tube with respect to the geodesic distance on Sp−1.

The following lemma (Proposition 4.1 of Johansen and Johnstone (1990)) holds for

the case dimN = d > 1. We omit the proof for the same reason as given for Lemma 3.1.

Lemma A.1 The critical radius ρc of N is given by

ρc = inf
x,y∈N

‖x− y‖2

2‖P⊥
y (x− y)‖ , (A.5)

where P⊥
y is the orthogonal projection onto the orthogonal complement of the tangent space

Ty(N) of N at y.
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Here we discuss the property of

h(x, y) =
2‖P⊥

y (x− y)‖
‖x− y‖2

(A.6)

appearing in (A.5). Since P⊥
y is continuous in y, h(x, y) is continuous on {(x, y) ∈ N×N |

x �= y}. Then we investigate the behavior of h(x, y) as ‖x − y‖ → 0. Since we are

considering local property ofN we can take d-dimensional local coordinates t = (t1, . . . , td)

and express x, y in terms of t. For the sake of convenience we use the Einstein convention

of indices.

Write y = φ(t) and x = φ(t+ dt). Then

‖x− y‖ = ‖φ(t+ dt)− φ(t)‖2 = gijdt
idtj + o(‖dt‖2),

where

gij =
(∂φ
∂ti

)′ ∂φ
∂tj

, i, j = 1, . . . , d,

are the elements of the first fundamental form at y = φ(t). On the other hand

P⊥
y (φ(t+ dt)− φ(t)) = P⊥

y

∂φ

∂ti
dti +

1

2
P⊥
y

∂2φ

∂ti∂tj
dtidtj + o(‖dt‖2)

=
1

2
P⊥
y

∂2φ

∂ti∂tj
dtidtj + o(‖dt‖2)

and

2‖P⊥
y (φ(t+ dt)− φ(t))‖ =

∥∥∥P⊥
y

∂2φ

∂ti∂tj
dtidtj

∥∥∥ + o(‖dt‖2).

Let

w∗ ∝ −P⊥
y

∂2φ

∂ti∂tj
dtidtj

such that ‖w∗‖ = 1. (If the right hand side is the zero vector, let w∗ = 0.) Then

2‖P⊥
y (φ(t+ dt)− φ(t))‖ = Hij(w

∗)dtidtj + o(‖dt‖2),

where

Hij(w) = −w′ ∂2φ

∂ti∂tj
, i, j = 1, . . . , d.

Therefore we have

h(x, y) =
Hij(w

∗)dtidtj

gijdtidtj
+ o(‖dt‖2).

The d × d matrix with (i, j)-th element Hj
i (w) = Hik(w)g

kj is called the second funda-

mental form of N at y with respect to the direction w. The eigenvalues of the second

fundamental form are called the principal curvatures and their associated eigenvectors are

called principal directions. Note that w∗ depends on dt through the direction dt/‖dt‖.
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Fix dt. Then

Hij(w
∗)dtidtj = −w∗′ ∂2φ

∂ti∂tj
dtidtj = −w∗′P⊥

y

∂2φ

∂ti∂tj
dtidtj

= max
‖w‖=1

(
− w′P⊥

y

∂2φ

∂ti∂tj
dtidtj

)

= max
w∈Ty(N)⊥, ‖w‖=1

(
− w′ ∂2φ

∂ti∂tj
dtidtj

)
= max

w∈Ty(N)⊥∩Sp−1
Hij(w)dt

idtj .

Taking the maximum with respect to the direction dt/‖dt‖ we have

lim sup
x→y

h(x, y) = max
‖dt‖=1

Hij(w
∗)dtidtj

gijdtidtj

= max
w∈Ty(N)⊥∩Sp−1

max
‖dt‖=1

Hij(w)dt
idtj

gijdtidtj

= max
w∈Ty(N)⊥∩Sp−1

|λmax(w)|,

where |λmax(w)| denotes the principal curvature having the largest absolute value.

1/|λmax(w)| is the local radius of curvature at y with respect the direction ±w.
Write

h(y, y) = lim sup
x→y

h(x, y)

so that h(x, y) is defined and finite for all (x, y) ∈ N ×N . By continuity of the radius of

curvature it is easy to see that as x, z → y

h(y, y) = lim sup
x, z→y

h(x, z).

Now by a simple compactness argument h attains a finite maximum over N ×N . To

prove this let (xi, yi), i = 1, 2, . . ., be a sequence of points of N ×N such that h(xi, yi) ↑
h̄ = supx,y∈N h(x, y). By compactness we can assume without loss of generality that

(xi, yi) → (x0, y0). If x0 �= y0 then h(x0, y0) = h̄ by continuity. If x0 = y0 then h(x0, y0) =

lim sup(x,y)→(x0,y0) h(x, y) ≥ limi→∞ h(xi, yi) = h̄. However obviously h(x0, y0) ≤ h̄. This

proves that h attains a finite maximum over N × N , and hence the critical radius ρc is

positive under our assumptions.

So far we have considered the tube with respect to the Euclidean distance. We proceed

to discuss the tube in the unit sphere Sp−1 with respect to the geodesic distance. h(u, v)

in (3.4) can be written as

h(u, v) =

√
1− u′Pvu
1− u′v

=
2‖P⊥

v (u− v)‖
‖u− v‖2

,

which is identical to h(x, y) in (A.6) with N replaced with K except that u is restricted

to M ⊂ Sp−1. However as u → v, (u − v)/‖u − v‖ becomes orthogonal to v. On the
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other hand since K is a cone, one of the principal directions of K at v is v itself and

the other principal directions are orthogonal to v. Therefore the calculation involving the

second fundamental form of M at v ∈ M can be replaced with the calculation of second

fundamental form of K at v ∈ K. In particular h(v, v) = lim supu→v h(u, v) is similarly

defined and h(u, v) attains a finite maximum over M × M . This proves the claims of

Remark 3.1.

A.3 Proof of Lemmas 3.3, 3.5 and Theorem 3.1

Let z ∈ Rp be distributed as N(0, Ip), and let r = ‖zK‖, s = ‖z − zK‖. By (3.6)

P (z ∈ Kθ) = P (s < r tan θ)

=
1

(2π)p/2

d∑
e=0

∫ ∫
0≤s<r tan θ

e−(r2+s2)/2rd−esp−d−2+edrds

×
∫
M

[ ∫
Tu(K)⊥∩Sp−1

treH(u, v) dv
]
du.

By a simple change of variables we obtain∫ ∫
0≤s<r tan θ

e−(r2+s2)/2rd−esp−d−2+e dr ds

= B̄ 1
2
(d+1−e), 1

2
(p−d−1+e)(cos

2 θ) · 2p/2−2 Γ
(d+ 1− e

2

)
Γ
(p− d− 1 + e

2

)
.

Note that ∫
Tu(K)⊥∩Sp−1

treH(u, v) dv = 0

if e is odd, since treH(u, v) is an odd degree polynomial in the elements of v. This proves

Lemma 3.3.

Now we proceed to the proof of Theorem 3.1.

P (T ≥ a) = P (T ≥ a, z ∈ Kθc) + P (T ≥ a, z /∈ Kθc).

We bound the second term on the right hand side from above. Note that the projection

zK always exists and we can write

z = r
zK

‖zK‖ + s
z − zK

‖z − zK‖
and z ∈ Kθc if and only if

s < r tan θc.

Since r = max(T, 0), we have for z /∈ Kθc and T ≥ 0

‖z‖2 = r2 + s2 ≥ r2(1 + tan2 θc) ≥ T 2(1 + tan2 θc).
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Therefore for a > 0

P (T ≥ a, z /∈ Kθc) ≤ P (‖z‖2 ≥ a2(1 + tan2 θc), z /∈ Kθc)

= Ḡp(a
2(1 + tan2 θc))P (z /∈ Kθc)

and

P (T ≥ a) ≤ P (T ≥ a, z ∈ Kθc) + Ḡp(a
2(1 + tan2 θc))P (z /∈ Kθc).

Furthermore

P (T ≥ a) ≥ P (T ≥ a, z ∈ Kθc).

Therefore it remains to show that P (T ≥ a, z ∈ Kθc) for a > 0 can be written as QL(a)

of (3.11). Now

P (T ≥ a, z ∈ Kθc) =
1

(2π)p/2

d∑
e=0

e:even

∫ ∫
a≤r<∞

0≤s<r tan θc

e−(r2+s2)/2rd−esp−d−2+edr ds

×
∫
M

[ ∫
Tu(K)⊥∩Sp−1

treH(u, v) dv
]
du.

Integrating the right hand side with respect to s first we see that P (T ≥ a, z ∈ Kθc) =

QL(a). This proves the theorem.

Finally we prove Lemma 3.5. Consider a tube Mρ in Rp around M with respect to

the Euclidean distance as defined in (A.4). Then the p-dimensional volume Vol(Mρ) is

a polynomial in ρ of degree p unless Mρ has self-overlap. Moreover the Gauss-Bonnet

theorem states that the coefficient of Vol(Mρ) of the highest degree p is ωp χ(M), where

ωp = Ωp/p is the volume of the unit ball in Rp (e.g., Theorem 5.9 of Gray (1990)). On

the other hand, using the coordinate system (r, u, s, v), the volume of Mρ is evaluated as

Vol(Mρ) =
∫
(r−1)2+s2<ρ2, s≥0

dz

=
d∑
e=0

∫ ∫
(r−1)2+s2<ρ2, s≥0

rd−esp−d−2+edr ds ·
∫
M

[ ∫
Tu(K)⊥∩Sp−1

treH(u, v) dv
]
du

= 2ωp ρ
p

d∑
e=0

e:even

wd+1−e + (terms of lower degrees in ρ).

The proof is complete.

A.4 Recurrence formula for nk of Definition 3.1

nk(d1, . . . , dk;m) of Definition 3.1 can be easily calculated by the recurrence formula

in Lemma A.2. Since nk(d1, . . . , dk;m) is symmetric in d1, . . . , dk, we can restrict our

attention to the case when d1 ≥ · · · ≥ dk.
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Lemma A.2 For k ≥ 2, d1 ≥ · · · ≥ dk ≥ 0, and m ≥ 0, it holds

nk(d1, . . . , dk;m)

=




1 if m = 0,

0 if m > 0, dk = 0, k = 2,

nk−1 (d1, . . . , dk−1;m) if m > 0, dk = 0, k ≥ 3,

nk (d1 − 1, d2, . . . , dk;m)

+
∑k
j=2 dj nk (d1 − 1, d2, . . . , dj−1, dj − 1, dj+1, . . . , dk;m− 1)

otherwise.

Here in the last expression the arguments of nk should be reordered so that d1 ≥ d2 ≥
· · · ≥ dk ≥ 0 (if necessary). For example, if d2 > d1 − 1 ≥ d3, nk(d1 − 1, d2, . . . , dk;m)

should be replaced with nk(d2, d1 − 1, d3, . . . , dk;m).

Proof. Consider the first element ‘1’ of A1 = {1, . . . , d1}. Among the nk(d1, . . . , dk;m)

possible m pairings, there are nk(d1 − 1, d2, . . . , dk;m) ways where ‘1’ does not appear in

the m pairings; while there are

dj × nk (d1 − 1, d2, . . . , dj−1, dj − 1, dj+1, . . . , dk;m− 1)

ways where ‘1’ makes a pairing with one element of Aj . Then the last equation of the

recurrence formula follows whenm ≥ 1 and dk ≥ 1. The other three equations are obvious

boundary conditions for the recursion.

A.5 Proof of (3.18)

In order to prove (3.18) we use the following.

Lemma A.3 For a real number a such that a �= 0,−1,−2, . . . and a non-negative integer

n = 0, 1, 2, . . ., define

In(a) =
n∑
k=0

(−1)n−k 2k Γ(
a
2
+ k)

Γ(a+ k)

(
n

k

)

and

Jn(a) =
n∑
k=0

(−1)n−k 2k Γ(
a
2
+ k + 1)

Γ(a+ k + 1)

(
n

k

)
.

Then

In(a) =

{
cn(a) if n is even

0 if n is odd
(A.7)

and

Jn(a) =

{
1
2
cn(a) if n is even

1
2
cn+1(a) if n is odd,

(A.8)

where

cn(a) = 2n
Γ(n+1

2
) Γ(n+a

2
)√

π Γ(n + a)
=

Γ(n+1
2
)

2a−1 Γ(n+a+1
2

)
.
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Proof. We use induction on n. The claims (A.7) and (A.8) are easily checked for

n = 0, 1. Assume that they are true for n− 1 and n.

Making use of the identity
(
n+1
k

)
=
(
n
k

)
+
(
n
k−1

)
, we have

In+1(a) =
n+1∑
k=0

(−1)n+1−k 2k
Γ(a

2
+ k)

Γ(a+ k)

{(
n

k

)
+

(
n

k − 1

)}
= −In(a) + 2Jn(a)

=

{
0 if n is even

cn+1(a) if n is odd.
(A.9)

Similarly we have

Jn+1(a) = −Jn(a) + 2
n∑
k=0

(−1)n−k 2k Γ(
a
2
+ k + 2)

Γ(a+ k + 2)

(
n

k

)
.

Noting that

Γ(a
2
+ k + 2)

Γ(a+ k + 2)

(
n

k

)
=

Γ(a+2
2

+ k)

Γ((a+ 2) + k)

{
a+ 2

2

(
n

k

)
+ n

(
n− 1

k − 1

)}
,

we have

Jn+1(a) = −Jn(a) + (a + 2) In(a+ 2) + 4n Jn−1(a+ 2)

=

{
1
2
cn+2(a) if n is even

1
2
cn+1(a) if n is odd.

(A.10)

(A.9) and (A.10) imply that (A.7) and (A.8) hold for n ≥ 2. The proof is complete.

The relation (3.18) is equivalent to (A.7) with n = q−1, k = q−1−j, and a = ν−q+1.

A.6 Proof of Lemma 4.5

Let f(z) = 1−kz2(k−1)+(k−1)z2k and g(z) = (1−zk)2 be the numerator and denominator

of the argument of the supremum in (4.15). When k = 2, f(z) ≡ g(z) and the statement

holds trivially. Consider the case k ≥ 3. We claim that

d

dz

(f(z)
g(z)

)
> 0 for 0 < z < 1. (A.11)

In fact, simple calculation yields that

d

dz

(f(z)
g(z)

)
=

2k(1− zk)zk−1

g(z)2
· h(z),

where

h(z) = 1− (k − 1)zk−2 + (k − 1)zk − z2k−2

= (1− z2){1 + z2 + · · ·+ (z2)k−2 − (k − 1)zk−2}.
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By the convexity of the map ξ �→ (z2)ξ, we have

1 + z2 + · · ·+ (z2)k−2

k − 1
≥ (z2)

0+1+···+(k−2)
k−1 = |z|k−2,

and the equality holds if and only if |z| = 1. Therefore h(z) > 0 for |z| < 1, which implies

(A.11). Therefore we have the supremum in (4.15) as

sup
0≤z<1

f(z)

g(z)
= lim

z↑1
f(z)

g(z)
= lim

z↑1

d2

dz2
f(z)

d2

dz2
g(z)

=
2(k − 1)

k
.
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Table 5.1. Estimation of P (B̂k ≥ ck,α).

(Monte Carlo simulations with 50000 replications.)

k n α = 0.25 α = 0.10 α = 0.05 α = 0.025 α = 0.01

3 10 0.0807 0.0212 0.0074 0.0021 0.0001

20 0.1444 0.0606 0.0330 0.0175 0.0094

50 0.1962 0.0848 0.0466 0.0268 0.0139

100 0.2156 0.0919 0.0498 0.0275 0.0134

200 0.2298 0.0956 0.0502 0.0278 0.0120

500 0.2342 0.0965 0.0496 0.0255 0.0105

1000 0.2369 0.0982 0.0497 0.0247 0.0104

2000 0.2400 0.0995 0.0500 0.0257 0.0105

5000 0.2417 0.0994 0.0506 0.0257 0.0104

10000 0.2411 0.0983 0.0492 0.0249 0.0096

∞ 0.2395 0.0993 0.0498 0.0256 0.0104

4 10 0.0100 0.0021 0.0006 0.0000 0.0000

20 0.0639 0.0394 0.0284 0.0208 0.0154

50 0.1139 0.0701 0.0540 0.0415 0.0301

100 0.1397 0.0841 0.0624 0.0474 0.0338

200 0.1689 0.0883 0.0626 0.0470 0.0319

500 0.2067 0.0906 0.0568 0.0401 0.0254

1000 0.2212 0.0971 0.0585 0.0355 0.0213

2000 0.2323 0.0963 0.0528 0.0320 0.0161

5000 0.2438 0.0968 0.0499 0.0282 0.0122

10000 0.2427 0.0975 0.0499 0.0270 0.0118

∞ 0.2400 0.0996 0.0499 0.0246 0.0097

s.e. 0.0019 0.0013 0.0010 0.0007 0.0004
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Figure 3.1. Index set M , cone K, projection zK (left).

Tube Mθ and associated cone Kθ (right).
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Figure 4.2. The maximum of a trilinear form (2× 2× 2).
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Figure 5.1. The maximum of a symmetric trilinear form (2× 2× 2).
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