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Abstract

For two-way ordered categorical data, correspondence analysis and the RC asso-
ciation model (the row-column-effect association model) with order-restricted scores
have been proposed mainly for descriptive purposes. In this paper, tests for inde-
pendence in two-way ordered contingency tables based on these models are devel-
oped in a general framework of inequality-restricted canonical correlation analysis.
The limiting null distributions are characterized as the maxima of Gaussian ran-
dom fields and asymptotic expansions of their tail probabilities are derived by the
tube method, an integral geometric approach. Some numerical techniques for fit-
ting order-restricted models are discussed. An example of data analysis is given to
demonstrate the practical usefulness of the proposed method.

AMS 2000 subject classifications: Primary 62H17; secondary 60D05, 62H10, 62H20.

Key words: correspondence analysis, Gaussian random field, level probability, RC
association model, tube method, Wishart distribution.
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1 Correspondence analysis and the RC association

model in two-way ordered categorical data

The method of canonical correlation or correspondence analysis (CA) is one of the most

popular tools for analyzing two-way contingency tables. Suppose that an a × b table

{nij}1≤i≤a, 1≤j≤b,
∑

ij nij = n, is observed from a multinomial population with cell proba-

bilities {pij}1≤i≤a, 1≤j≤b, pij > 0,
∑

ij pij = 1. The correspondence analysis in its simplest

form fits the empirical frequency p̂ij = nij/n to the model

pij = pi·p·j(1 + φµiνj) (1.1)

with the side conditions

∑
i pi·µi =

∑
j p·jνj = 0,

∑
i pi·µ2

i =
∑

j p·jν2
j = 1. (1.2)

The weighted least square method is usually used for fitting with the weights defined by

the covariance structure under the independence model pij = pi·p·j (i.e., φ = 0). Here the

dot “·” as a subscript means summation with respect to the corresponding subscript.

This method has the advantage that if the row and/or column variables are ordinal

then the scores µi and νj are expected to reflect the levels of the ith row and the jth

column, respectively.

The multiplicative model for the same purpose is the RC association model (the row-

column-effect association model, RC model) proposed by Goodman [14], [15], [16]:

log pij = αi + βj + φµiνj . (1.3)

To ensure identifiability, the same side conditions (1.2) are imposed. The RC association

model can be regarded as a natural extension of the model by Johnson and Graybill

[21] for two-way ANOVA in two-way categorical data analysis. In the RC association

model the maximum likelihood method is usually used to estimate parameters. Numerical

algorithms for maximizing likelihood are well developed (e.g., Goodman [16], Becker [3]).

In this paper we focus on the analysis of two-way contingency tables where the row

and/or the column variables are ordinal. To analyze such ordered categorical data, we

use the correspondence analysis or the RC association model with the order restrictions

of scores

φ ≥ 0, µ1 ≤ · · · ≤ µa, ν1 ≤ · · · ≤ νb, (1.4)

when both row and column variables are ordinal, or

φ ≥ 0, ν1 ≤ · · · ≤ νb, (1.5)

when only column variables are ordinal. Note that, in the former case, reversing the order

of either row or column categories gives a negatively correlated model.
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Intuitively these order restrictions seem natural, because if the scores µi, νj reflect the

actual levels of ordinal variables then the inequalities in (1.4) or (1.5) will be satisfied

exactly. Another rationale is that under the model (1.1) with order restrictions in the

column scores, ν1 ≤ · · · ≤ νb, a stochastic order exists between the two conditional

probabilities {pj|i = pij/pi·}1≤j≤b and {pj|i′ = pi′j/pi′·}1≤j≤b for any i �= i′ in the sense that

l∑
j=1

pj|i ≥
(≤)

l∑
j=1

pj|i′, 1 ≤ ∀ l ≤ b − 1. (1.6)

Similarly under the RC association model (1.3), the conditional probability satisfies the

relation that, for any i �= i′,

pj|i′
pj|i

≤
(≥)

pj+1|i′
pj+1|i

, 1 ≤ ∀ j ≤ b − 1, (1.7)

which is a partial ordering in the sense of monotone likelihood ratio. In other words, by

imposing the order restrictions the models (1.1) and (1.3) give simple models that embody

the partial orders (1.6) and (1.7), respectively (also see Gilula and Ritov [13]).

For the above reasons, models with the order restrictions (1.4) or (1.5) have been

proposed by many authors. See, for example, Nishisato and Arri [26], Tanaka [36], Saito

and Otsu [30], and Ritov and Gilula [29] in the context of the correspondence analysis,

and Goodman [16] and Ritov and Gilula [28] in the context of the RC association model.

Douglas and Fienberg [8], and Etzioni, et al. [10] give excellent surveys of the relevant

area.

However, almost all of these studies have treated fitting the model for descriptive

purposes. From the viewpoint of statistical inference, there are at least two statistical

problems of primary interest: one is testing the null hypothesis H : φ = 0 that the row

and column variables are independent, and the other is assessing the goodness of fit of

the order restrictions when φ �= 0. For the latter problem, Ritov and Gilula [28] gave a

clear answer. They derived the limiting null distribution of the likelihood ratio criterion

for testing goodness of fit as a mixture of χ2 distributions in the RC association model.

In this paper we will tackle the former problem.

According to the method of correspondence analysis, when there are natural orderings

in both row and column categories, the estimator of φ is given by

φ̂ = max{∑ij p̂ijµiνj | ∑i p̂i·µi =
∑

j p̂·jνj = 0,
∑

i p̂i·µ2
i =

∑
j p̂·jν2

j = 1,

µ1 ≤ · · · ≤ µa, ν1 ≤ · · · ≤ νb}. (1.8)

If the order restriction was not imposed in the maximization (1.8), it is well known that√
n φ̂ under the independence model H : φ = 0 converges in distribution to the square

root of the largest eigenvalue of an (a− 1)× (a− 1) Wishart random matrix with (b− 1)

degrees of freedom, Wa−1(b − 1, Ia−1) (O’Neill [27], Eaton and Tyler [9]). Haberman [17]

proved that in the RC association model (1.3) the likelihood ratio criterion for testing
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H : φ = 0 has the same asymptotic distribution as the largest eigenvalue of the Wishart

matrix Wa−1(b − 1, Ia−1) under the null hypothesis.

In contrast to these cases, the null distribution of φ̂ under the order restrictions was

completely unknown. Hirotsu [18] suggested the use of φ̂ as a test statistic for testing

independence, but he pointed out difficulties in handling its distribution. In this paper we

first show that the asymptotic distribution of φ̂ in (1.8) is characterized as a distribution

of the maximum of a certain Gaussian random field. Recently an integral-geometric

approach called the tube method has been developed for deriving the distribution of the

maxima of Gaussian random fields (Sun [33], Kuriki and Takemura [23], Takemura and

Kuriki [35]). With the help of the tube method, we derive an expression approximating the

upper tail probabilities of “inequality-restricted canonical correlations”, which includes φ̂

in (1.8) as a particular case.

Difficulties in the problem treated here come from a singularity in the models (1.1) or

(1.3), such that the scores µi and νj are not identifiable under the independence model

φ = 0. For this reason our problem is crucially different from that of Das and Sen [7],

who proved asymptotic normality of the inequality-restricted canonical correlation when

the true canonical correlation is nonzero and maximizing scores (µi, νj , in our case) are

identifiable.

The construction of the paper is as follows. In Section 2 we formulate the inequality-

restricted canonical correlation analysis or correspondence analysis, and consider a class

of distributions of the maxima of Gaussian random fields that appear as asymptotic

distributions of the inequality-restricted canonical correlations including φ̂ in (1.8). The

limiting null distribution of the likelihood ratio criterion for testing H : φ = 0 in the

RC association model with the order restrictions is proved to be the same as that of

n max{φ̂, 0}2 using the theory of Chernoff [5]. A formula for approximating their tail

probabilities is then given by the tube method. In Section 3 we give an example of data

analysis. Some techniques for fitting order-restricted models are proposed there. Proofs

of the main results are given in Section 4.

2 Tail probability of the inequality-restricted canon-

ical correlation

2.1 Inequality-restricted canonical correlation

In this subsection we give a precise definition of “inequality- (or order-) restricted canon-

ical correlation” and derive a canonical form of its asymptotic distribution.

Let (xt, yt) ∈ Rp × Rq, t = 1, . . . , n, be a sequence of i.i.d. random vectors from a

population with finite cumulants up to the fourth order. The population and sample
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covariance matrices are denoted by(
Σxx Σxy

Σ′
xy Σyy

)
,

(
Σ̂xx Σ̂xy

Σ̂′
xy Σ̂yy

)
.

The population covariance matrix may be singular.

Let K ⊂ Rp and L ⊂ Rq be closed convex cones defined by a finite or infinite number

of linear inequality constrains. In this paper the maximum

ρ̂ = max
v∈K, w∈L

v′Σ̂xyw√
v′Σ̂xxv

√
w′Σ̂yyw

(2.1)

is called the (sample) inequality-restricted canonical correlation. Our definition is an

extension of that of Das and Sen [6], [7]. Note that the maximum ρ̂ exists unless v′Σ̂xxv =

0, ∀v ∈ K or w′Σ̂yyw = 0, ∀w ∈ L. Obviously when K = Rp and L = Rq, (2.1) is reduced

to the largest canonical correlation in the usual definition.

For the a × b contingency table, let xt ∈ Ra and yt ∈ Rb be a pair of independent

random vectors consisting of zeros and ones such that

P
(
xt = (δik)1≤k≤a, yt = (δjk)1≤k≤b

)
= pij ,

where δ denotes the Kronecker delta. Let

K = {µ ∈ Ra | µ1 ≤ · · · ≤ µa}, L = {ν ∈ Rb | ν1 ≤ · · · ≤ νb}.
Then ρ̂ in (2.1) is reduced to φ̂ in (1.8).

In this paper we consider the distribution of ρ̂ in (2.1) in the null case Σxy = 0.

In the context of the contingency table, this is equivalent to the independence model

pij = pi·p·j. Let Σ
1
2
xx be a p × p matrix satisfying Σ

1
2
xxΣ

1
2
′

xx = Σxx. Let Σ
1
2
yy be defined

similarly. Define projection matrices by Rx = (Σ
1
2
xx)+Σ

1
2
xx, Ry = (Σ

1
2
yy)+Σ

1
2
yy, where “+”

denotes the Moore–Penrose generalized inverse. Then, by the assumption of the finiteness

of the fourth cumulants and the central limit theorem, it is easy to show that

Zn =
√

n(Σ
1
2
xx)+Σ̂xy(Σ

1
2
′

yy)+

converges in distribution to RxZR′
y as n goes to infinity, where Z = (zij) ∈ Rp×q is a

p × q random matrix such that each component zij is an independent random variable

distributed according to the standard normal distribution N(0, 1). The set of p × q real

matrices is denoted by Rp×q.

Put

Tn =
√

n max
v∈K, w∈L

v′Σ̂xyw√
v′Σxxv

√
w′Σyyw

.

Then

Tn√
λmax(Σ̂xxΣ+

xx)λmax(Σ̂yyΣ+
yy)

≤ √
nρ̂ ≤ Tn√

λmin(Σ̂xxΣ+
xx)λmin(Σ̂yyΣ+

yy)
,
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where λmax(·) and λmin(·) are the maximum and nonzero minimum eigenvalues. Because

λmax(Σ̂xxΣ
+
xx), λmin(Σ̂xxΣ

+
xx), λmax(Σ̂yyΣ

+
yy), and λmin(Σ̂yyΣ

+
yy) converge to one in proba-

bility,
√

nρ̂ has the same limiting distribution as Tn if that distribution exists.

Tn can be rewritten as

Tn = max
v∈P, w∈Q

v′Znw,

where

P =
{
Σ

1
2
′

xxv | v ∈ K
}
∩ Sp−1, Q =

{
Σ

1
2
′

yyw | w ∈ L
}
∩ Sq−1, (2.2)

with Sd−1 the (d − 1)-dimensional unit sphere in Rd. By continuity of the map

X (∈ Rp×q) 	→ max
v∈P, w∈Q

v′Xw (∈ R),

Tn is shown to converge in distribution to

T = max
v∈P, w∈Q

v′(RxZR′
y)w = max

v∈P, w∈Q
v′Zw, (2.3)

where Z = (zij) ∈ Rp×q, zij ∼ N(0, 1) is i.i.d. Now we have proved the following theorem.

Theorem 2.1 Assume that (xt, yt) ∈ Rp×Rq, t = 1, . . . , n, is a sequence of i.i.d. random

vectors from a population with finite fourth cumulants. Assume that xt and yt are uncor-

related. Then
√

n times the inequality-restricted canonical correlation,
√

nρ̂, converges in

distribution to T in (2.3) with P, Q defined in (2.2) as n goes to infinity.

Asymptotic distributions of the order-restricted canonical correlations for two-way

tables are summarized as follows.

Corollary 2.1 (If both row and column variables are ordinal.)

Let φ̂ in (1.8) be the order-restricted canonical correlation with order restrictions in both

the row and column scores. Then under the independence model pij = pi·p·j,
√

n φ̂ has the

limiting distribution T in (2.3) with

P = {(v1, . . . , va)
′ ∈ Sa−1 | ∑i

√
pi·vi = 0, v1/

√
p1· ≤ · · · ≤ va/

√
pa·}, (2.4)

Q = {(w1, . . . , wb)
′ ∈ Sb−1 | ∑j

√
p·jwj = 0, w1/

√
p·1 ≤ · · · ≤ wb/

√
p·b}. (2.5)

Corollary 2.2 (If only the column variables are ordinal.)

Let φ̂ be the order-restricted canonical correlation with order restrictions in the column

scores, ν1 ≤ · · · ≤ νb. Then under the independence model pij = pi·p·j,
√

n φ̂ has the

limiting distribution T in (2.3) with

P = {(v1, . . . , va)
′ ∈ Sa−1 | ∑i

√
pi·vi = 0},

and Q being given in (2.5).
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The following theorem shows that these distributions arise as the limiting null distri-

butions of the likelihood ratio criteria for testing independence. We will prove this by

virtue of the theory of Chernoff [5], who discussed the asymptotic distribution of the like-

lihood ratio test statistic when the true parameter is on the boundary of the hypothesis

parameter space (also see Self and Liang [31]). A proof is given in Section 4.

Theorem 2.2 Assume that an a×b table {nij} is a sample from the multinomial ((a×b)-

nominal) distribution under the RC model (1.3) with the order restrictions (1.4) in both

the row and the column scores. Then the likelihood ratio criterion ((−2)× the maximum

of the log likelihood ratio) for testing the hypothesis of independence H : φ = 0 converges

in distribution to max{T, 0}2 with T given in Corollary 2.1.

The likelihood ratio criterion for testing the hypothesis of independence H : φ = 0

under the order restrictions (1.5) in column scores converges in distribution to T 2 with T

given in Corollary 2.2.

The remainder of this section is devoted to deriving the distribution of

T = max
v∈P, w∈Q

v′Zw = max
v∈P, w∈Q

tr((vw′)′Z), (2.6)

where Z = (zij) ∈ Rp×q, zij ∼ N(0, 1) is i.i.d., and P and Q are arbitrary closed spherical

convex regions, i.e., the intersection of the unit sphere and a closed convex cone. As we

have seen above, this is a canonical form of the asymptotic distribution of the inequality-

restricted canonical correlation. Note that {v′Zw | (v, w) ∈ P ×Q} is a Gaussian random

field of zero mean and unit variance with the index set P ×Q, and that T is the maximum

of this random field.

2.2 The tube method

Put

P ⊗ Q = {v ⊗ w ∈ Rpq | v ∈ P, w ∈ Q},
where “⊗” denotes the Kronecker product. Then P ⊗ Q is a subset of the unit sphere

Spq−1 in Rpq. T in (2.6) can be rewritten as

T = max
u∈P⊗Q

u′z, (2.7)

where

z = vec(Z) = (z11, z12, . . . , zpq)
′

is the lexicographically arranged vector of Z. For a given compact subset M ⊂ Sn−1,

consider the maximum

max
u∈M

u′z, u′z =
n∑

i=1

uizi, (2.8)
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where z = (z1, . . . , zn)′ ∼ Nn(0, In) is a Gaussian random vector. In (2.7), n = pq and

M = P ⊗ Q. Note that {u′z | u ∈ M} is a canonical form of the Gaussian random field

of zero mean and unit variance having a finite Karhunen–Loève expansion.

It is in general difficult to derive the distribution of the maximum (2.8). However,

recently it has been recognized that under mild regularity conditions the asymptotic ex-

pansion of the upper tail probability P (maxu∈M u′z ≥ x) as x goes to infinity is expressed

as a linear combination of upper probabilities of the χ2 distributions with coefficients

characterized by some geometric quantities of the index set M . This theory is called

the tube method, originating from Hotelling [19], Weyl [37], and developed by Sun [33],

Takemura and Kuriki [34], [35], and Kuriki and Takemura [22], [23]. In the following we

give a brief summary of the tube method.

Define a geodesic distance between two points on the unit sphere Sn−1 by the length

of the great circle joining the two points:

dist(u, v) = cos−1(u′v), u, v ∈ Sn−1.

The subset of Sn−1 consisting of points with distances from M ⊂ Sn−1 less than or equal

to θ,

Mθ =
{
v ∈ Sn−1 | min

u∈M
cos−1(u′v) ≤ θ

}
,

is called the tube around M with radius θ.

We make assumptions on M :

Assumption 2.1 M is an m-dimensional manifold with boundaries. M is divided dis-

jointly as M =
⋃m

d=0 ∂Md, where ∂Md is finite union of d-dimensional C 2-open manifold.

Assumption 2.2 At each point u ∈ ∂Md ⊂ M , M has an (n − d)-dimensional tangent

cone (support cone) Su(M). Su(M) is convex.

For the definition of the tangent cone, see page 771 of Takemura and Kuriki [35].

The spherical projection point of v ∈ Mθ onto M , i.e., the point that attains the

minimum minu∈M dist(u, v), is denoted by vM . Although the projection point vM is not

necessarily determined uniquely, it is expected that for a sufficiently small θ > 0 each

v ∈ Mθ has the unique projection vM . The supremum θc of such θ is called the critical

radius of M . It can be proved that the assumptions of compactness and local convexity

of M (Assumptions 2.1 and 2.2) ensure the positiveness of θc. θc can be evaluated by the

following theorem, which is an extension of Proposition 4.3 of Johansen and Johnstone

[20].

Theorem 2.3 (Takemura and Kuriki [35], Lemma 2.1.)

Let

Nv(M) = Sv(M)∗ ∩ span{v}⊥, (2.9)

where

Sv(M)∗ = {x ∈ Rn | x′y ≤ 0, ∀y ∈ Sv(M)}
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is the dual cone of Sv(M) in Rn, span{v}⊥ is the orthogonal complement space in Rn of

the linear subspace spanned by v. Then

inf
u,v∈M

‖u − v‖2

2‖P(u − v | Nv(M))‖ =

{
tan θc, if θc < π/2,

∞, if θc ≥ π/2,
(2.10)

where P( · | Nv(M)) is the orthogonal projector in Rn onto Nv(M).

The (n − 1)-dimensional spherical volume of Mθ is denoted by Vol(Mθ). Theorem

2.4 below gives a formula for the volume of the tube Vol(Mθ), which is essentially given

in Naiman [25], Theorem 3.3, or Takemura and Kuriki [34], Theorem 2.4. To state the

theorem, we provide some notation.

Let t = (t1, . . . , td) be a local coordinate system of the manifold ∂Md such that u ∈
∂Md has a local representation u = φ(t). The volume element of ∂Md at u is given by

du =
√

det(gij(u))dt1 · · ·dtd, where gij(u) = (∂φ/∂ti)′(∂φ/∂tj) is the metric of ∂Md at u.

The second fundamental form of ∂Md at u with respect to the direction v is defined as

the d × d matrix H(u, v) with (i, j)th element

Hj
i = −

d∑
k=1

v′
(

∂2φ

∂ti∂tk
gkj
)
,

where gij is the (i, j)th element of the inverse matrix of (gij). Note that the volume element

du and the eigenvalues of H(u, v) are independent of the choice of local coordinate system.

Let

Ωn = Vol(Sn−1) =
2πn/2

Γ(n/2)

be the volume of the unit sphere. Now we are ready to state the theorem.

Theorem 2.4 Let Nu(M) be defined as in (2.9). For each 0 ≤ θ ≤ min(θc, π/2), the

volume of the tube Mθ is evaluated as

Vol(Mθ) =
m∑

d=0

d∑
k=0

Ωn

Ωd+1−k Ωn−d−1+k

∫
∂Md

du
∫

Nu(M)∩Sn−1
dv trkH(u, v)

×B̄ 1
2
(d+1−k), 1

2
(n−d−1+k)(cos2 θ), (2.11)

where du is the volume element of ∂Md, dv is the volume element of Nu(M) ∩ Sn−1,

H(u, v) is the second fundamental form of ∂Md at u with respect to the normal direction

v, trj denotes the jth elementary symmetric function of eigenvalues, and B̄a,b(·) is the

upper tail probability of the beta distribution with parameter (a, b). Let B̄ 1
2
n,0 ≡ 1.

Because z/‖z‖ is distributed uniformly on the unit sphere Sn−1, it holds by definition

that

Vol(Mθ)/Ωn = P
(
max
u∈M

u′z/‖z‖ ≥ cos θ
)
.
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Noting the independence of z/‖z‖ and ‖z‖, we have

P
(
max
u∈M

u′z ≥ x
)

= P
(
max
u∈M

u′z/‖z‖ ≥ x/‖z‖
)

= E
[
Vol(Mcos−1(x/‖z‖))

]/
Ωn, (2.12)

where we let cos−1(x/‖z‖) = 0 if x > ‖z‖. If the expression of the volume formula

Vol(Mθ) in (2.11) were valid for all θ, the distribution of maxu∈M u′z could be obtained

by taking an expectation. That is, substituting cos2 θ := x2/‖z‖2 into (2.11) and taking

an expectation with respect to ‖z‖2 ∼ χ2
n according to the relation

E
[
B̄ 1

2
j, 1

2
(n−j)(x

2/‖z‖2)
]

= Ḡj(x
2),

where Ḡj(·) is the upper probability of the χ2 distribution with j degrees of freedom.

The resulting formula is not exact because the formula (2.11) is valid only for small θ.

However, if x is large, then cos−1(x/‖z‖) in the right hand side of (2.12) is small, and this

formal method is expected to give an answer that is correct in some sense.

In fact, according to the arguments in Sun [33] and Theorem 3.1 of Kuriki and Take-

mura [23], the following result holds.

Theorem 2.5 As x → ∞,

P
(
max
u∈M

u′z ≥ x
)

=
m∑

d=0

d∑
k=0

1

Ωd+1−k Ωn−d−1+k

∫
∂Md

du
∫

Nu(M)∩Sn−1
dv trkH(u, v)

×Ḡd+1−k(x
2) + O(Ḡn′(x2(1 + tan2 θ′c))), (2.13)

where θ′c = min(θc, π/2), and n′ = dim lin(M) is the dimension of the linear hull of M .

Remark 2.1 It should be noted that the accuracy of the asymptotic expansion depends

on θc. Larger values of θc give a more accurate asymptotic expansion. In particular, when

M is spherically convex, the critical radius is θc ≥ π/2 and hence the remainder term in

(2.13) becomes zero. In this case the expression gives an exact upper probability.

2.3 Volume of the tube and an approximation of the tail prob-

ability

Here we again consider the particular case of M = P ⊗Q. We assume for a while that P

and Q are spherical polyhedra, i.e., the intersections of polyhedral cones and unit spheres.

Let E be (the relative interior of) an (e − 1)-dimensional face of P . Let F be (the

relative interior of) an (f − 1)-dimensional face of Q. Then

E ⊗ F = {v ⊗ w ∈ Rpq | v ∈ E, w ∈ F}

is an (e − 1)(f − 1)-dimensional C2-manifold, forming one of the connected components

of ∂M(e−1)(f−1). Let v and w be relative interior points of E and F , respectively. Then
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v ⊗ w is a relative interior point of E ⊗ F , and the tangent cone of P ⊗ Q at v ⊗ w is

given by

Sv⊗w(P ⊗ Q) = Sv(P ) ⊗ {w} ⊕ {v} ⊗ Sw(Q),

where Sv(P ) ⊂ Rp is the tangent cone of P at v, Sw(Q) ⊂ Rq is the tangent cone of Q at

w, and “⊕” denotes the direct sum of vector spaces. Because both Sv(P ) and Sw(Q) are

convex, so is Sv⊗w(P ⊗ Q). We have seen that Assumptions 2.1 and 2.2 are fulfilled.

Therefore, the tail probability of the inequality-restricted canonical correlation can be

obtained by evaluating the volume of the tube around P ⊗ Q ⊂ Spq−1 and its critical

radius θc, at least when P and Q are polyhedral. Indeed, we can reach results valid for

non-polyhedral P and Q by considering approximating sequences of spherical polyhedra.

The results are summarized as follows. The derivations are given in Section 4.

Theorem 2.6 Let P ⊂ Sp−1 and Q ⊂ Sq−1 be spherical convex regions. Let Pθ be the

tube around P in Sp−1. Assume that the (p − 1)-dimensional volume of the tube Pθ is

expressed in terms of the coefficients, we(P ), 1 ≤ e ≤ p, as

Vol(Pθ) = Ωp

p∑
e=1

we(P )B̄ 1
2
e, 1

2
(p−e)(cos2 θ).

Let wf(Q), 1 ≤ f ≤ q, be coefficients defined similarly to we(P ). Then as x → ∞, it

remains true that

P
(

max
v∈P, w∈Q

v′Zw ≥ x
)

=
p∑

e=1

q∑
f=1

we(P ) wf(Q)
2(min(e,f)−1)∑

k=0, k:even

ce,f,k Ḡe+f−1−k(x
2) + O(Ḡn′(x2(1 + tan2 θc))),

(2.14)

where

ce,f,k = (−1)k/2 2e+f−1−k/2 Γ(1
2
(e + 1)) Γ(1

2
(f + 1)) Γ(1

2
(e + f − 1 − k))√

π Γ(e − k/2) Γ(f − k/2) (k/2)!
, (2.15)

n′ = dim lin(P ) × dim lin(Q), and θc is the critical radius of P ⊗ Q. Here if both P and

Q are symmetric with respect to the origin, (i.e., if both P and Q are the unit spheres

restricted to certain-dimensional linear subspaces) then multiply the right hand side of

(2.14) by 1/2.

Remark 2.2 It is in general not easy to evaluate the coefficients we(P ) for arbitrarily

given P . However, when P is the spherical polyhedron defined in (2.4) of Corollary

2.1, then the we(P )s are so-called level probabilities, explained below, and methods for

evaluating them numerically are known.

Consider a one-way ANOVA model xi ∼ N(θi, 1/ni), i = 1, . . . , k. Denote by θ̂i the

maximum likelihood estimator of θi under the simple order restriction θ1 ≤ · · · ≤ θk.
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The level probability P (l, k; n1, . . . , nk), 1 ≤ l ≤ k, is defined to be the probability under

θ1 = · · · = θk that the MLEs θ̂i, i = 1, . . . , k, take exactly l distinct values. Then we(P )

with P defined in (2.4) is equal to

we(P ) =

{
P (e + 1, a; p1·, . . . , pa·), 1 ≤ e ≤ a − 1,

0, e = a.
(2.16)

The expressions of P (l, k; n1, . . . , nk) for k ≤ 4 are given in Barlow, et al. [2], Section

3.3. For general k, Miwa, et al. [24] pointed out that P (l, k; n1, . . . , nk) can be evaluated

numerically using a successive integration technique. From a practical point of view there

is no difficulty in calculating the coefficients we(P ).

The following theorem gives the critical radius of P ⊗Q. Define the (spherical) diam-

eter of P ⊂ Sp−1 by

φ = φ(P ) = sup
u, v∈P

cos−1(u′v).

A proof of Theorem 2.7 is given in Section 4.

Theorem 2.7 Let P ⊂ Sp−1 and Q ⊂ Sq−1 be spherically convex subsets of the unit

spheres such that dim P ≥ 1, dim Q ≥ 1. If at least either φ(P ) ≤ π/2 or φ(Q) ≤ π/2

holds, then the critical radius θc of P ⊗ Q is π/4. If φ(P ) > π/2 and φ(Q) > π/2, then

θc = tan−1

√√√√1 − cos φ(P ) cosφ(Q)

1 + cos φ(P ) cosφ(Q)
.

Corollary 2.3 The critical radius of P ⊗ Q in Corollary 2.1 is π/4. The critical radius

of P ⊗ Q in Corollary 2.2 is π/4.

Proof. The set P defined in (2.4) is the intersection of the unit sphere Sp−1 and the

convex cone generated by a − 1 edge vectors

ei =
(
−
√

p1·
qi

, . . . ,−
√

pi·
qi

,

√
pi+1,·

1 − qi
, . . . ,

√
pa·

1 − qi

)′
, 1 ≤ i ≤ a − 1,

with qi =
∑i

j=1 pj·. Because (ei)
′ej = 1/(qj(1 − qi)) > 0 for i < j, it holds that u′v ≥ 0

∀u, v ∈ P . This is equivalent to φ(P ) ≤ π/2.

Now we have determined the volume of tube and the critical radius of P ⊗ Q. We

summarize below the results in three important cases.

Corollary 2.4 The tail probability P (T ≥ x) of T defined in Corollary 2.1 is given as

(2.14) with we(P ) in (2.16),

wf(Q) =

{
P (f + 1, b; p·1, . . . , p·b), 1 ≤ f ≤ b − 1,

0, f = b,
(2.17)

n′ = (a − 1)(b − 1), and θc = π/4.
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Corollary 2.5 The tail probability P (T ≥ x) of T defined in Corollary 2.2 is given as

(2.14) with

we(P ) =
{

1, e = a − 1,

0, 1 ≤ e ≤ a − 2, e = a,

wf(Q) in (2.17), n′ = (a − 1)(b − 1), and θc = π/4.

Corollary 2.6 (Kuriki and Takemura [23], Corollary 4.2)

The tail probability of the square root of the largest eigenvalue of the Wishart matrix

Wp(q, Ip) is given by

P
(

max
v∈Sp−1, w∈Sq−1

v′Zw ≥ x
)

=
1

2

2(min(p,q)−1)∑
k=0, k:even

cp,q,k Ḡp+q−1−k(x
2) + O(Ḡpq(2x

2)) (2.18)

with the coefficient cp,q,k given in (2.15).

A numerical study to check the accuracy of the proposed approximation method is

summarized in Figure 2.1. In both the left and the right figures, the approximate upper tail

probabilities of T = maxv∈P, w∈Q v′Zw in (2.6) by Theorem 2.6 are plotted as solid lines.

The tail probabilities estimated by Monte Carlo simulations with 100,000 replications are

plotted by dashed lines. Upper and lower bounds of tail probabilities using the method

of Theorem 3.1 of Kuriki and Takemura [23] are plotted by dotted lines.

The left figure depicts the case where p = q = 2,

P = Q = {(cos θ, sin θ)′ | 0 ≤ θ ≤ π/3}, θc = π/4.

This corresponds to a 3 × 3 table with pi· ≡ 1/3, p·j ≡ 1/3, with both row and column

categories ordinal.

The right figure depicts the case where p = 5, q = 2,

P = S5−1, Q = {(cos θ, sin θ)′ | 0 ≤ θ ≤ π/3}, θc = π/4.

This corresponds to a 6×3 table with pi· ≡ 1/6, p·j ≡ 1/3, with only the column categories

ordinal.

In each case one can see that the approximations using the tube method are suffi-

ciently close to the tail probabilities estimated by Monte Carlo simulations. Therefore

the proposed formula is accurate enough in practice for calculating relevant p-values of

tests.

3 An example of data analysis

3.1 Fitting order-restricted models

In this section a contingency table is analyzed as an example. This is a cross-classified

table of job satisfaction by income given in Table 3.1, which is cited from Agresti [1], Table
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2.8. Everitt [11] reanalyzed the data using the (unrestricted) RC association model. This

is a typical example of categorical data with both row and column variables ordinal.

We reanalyze the data using the order-restricted correspondence analysis and using the

order-restricted RC association model. The results of the data analysis are summarized

in Tables 3.2 and 3.3. Before examining the results we discuss the method of estimating

parameters under the order restrictions. In the following we consider the case where there

are natural orderings in row and column categories only for purposes of explanation.

In both the correspondence analysis and the RC association model, the parameters

φ, µi and νj can be estimated from collapsed tables. Let I = I1|I2| . . . be a partition of

{1, 2, . . . , a} such that if i ∈ Ik and i′ ∈ Ik+1 then i < i′. For example I = 12|3|456 is such

a partition of {1, 2, 3, 4, 5, 6}. Let J = J1|J2| . . . be a partition of {1, 2, . . . , b} such that

if j ∈ Jl and j′ ∈ Jl+1 then l < l′. Given a pair of partitions (I,J ), define a collapsed

table with the (k, l)th cell

Nkl =
∑

i∈Ik, j∈Jl

nij .

Let φ̌, µ̌k and ν̌l be the estimates of φ, µk and νl in the correspondence analysis (1.1) or in

the RC association model (1.3) under the side condition (1.2) without order restriction.

Lemma 3.1 Let φ̂, µ̂i and ν̂j be the estimates in the correspondence analysis (or the

maximum likelihood estimates in the RC association model) with order restrictions based

on the non-collapsed data. Then there exists a pair of partitions (I,J ) such that the

estimates of the correspondence analysis (or the maximum likelihood estimates based on

the RC association model, resp.) without order restriction based on the collapsed table

{Nkl} satisfy φ̌ = φ̂, µ̌k = µ̂i, ν̌l = ν̂j for i ∈ Ik, j ∈ Jl.

Lemma 3.1 for the RC association model is Lemma 4 of Ritov and Gilula [28]. The

proof for correspondence analysis is parallel and omitted.

The desired order-restricted estimator can be obtained in principle by examining all

the possible ways of collapsing. Here we must be careful about a particular partition

I = 12 · · ·a of {1, 2, . . . , a} corresponding to µ1 = µ2 = · · · = µa. This is reduced to the

independence model whenever J is. There are (2a−1 − 1) × (2b−1 − 1) ways of collapsing

to be taken into account in addition to the independence model.

Moreover, the following branch and bound techniques can be used. For two partitions I
and I ′, write I � I′ if I is a subpartition of I ′. For example, I = 12|3|456 � I ′ = 12|3456.

Write (I,J ) � (I ′,J ′) if I � I ′ and J � J ′.

Rule 1. Once a feasible (i.e., satisfying the order restrictions) solution corresponding to

a pair of partitions, say (I,J ), is found, it is not necessary to count other collapsings

(I ′,J ′) such that (I,J ) � (I′,J ′)

Rule 2. If a solution (which may be feasible or nonfeasible) corresponding to a pair of

partitions, say (I,J ), gives a smaller canonical correlation (or likelihood) than the

canonical correlation (or likelihood, resp.) given by the other feasible solution, it is

not necessary to count other collapsings (I′,J ′) such that (I,J ) � (I′,J ′).
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Therefore we can propose a procedure for examining (2a−1−1)×(2b−1−1)+1 possibilities

by starting with the smallest pair (I,J ), I = 1|2| · · · |a, J = 1|2| · · · |b, and searching

other possibilities in an ascending direction in the sense of the partial order “�”.

This naive procedure seems unrealistic at first glance because the number of collapsed

tables is of exponential order in a+ b as a and b increase. However, without order restric-

tion, not only the correspondence analysis but also the maximum likelihood estimation of

the RC association model can be performed at small computational cost (Becker [3]). Ac-

cording to preliminary numerical experiments, at least the case a = b = 10 is manageable

by standard personal computers even when Rules 1 and 2 above are not applied.

Finally it should be noted that, once the maximum likelihood estimates φ̂, µ̂i and ν̂j

in the order-restricted RC model are obtained, then the maximum likelihood estimates of

cell probabilities can be obtained by the iterative proportional scaling (IPS) procedure.

The algorithm is as follows.

Step 1. Set p̂ij = nij/n, qij := eφ̂µ̂iν̂j as an initial value.

Step 2. Iterate the following: qij := (p̂i·/qi·) × qij , qij := (p̂·j/q·j) × qij .

Then the maximum likelihood estimates of cell probabilities are obtained as the limit

in Step 2. The figures in parentheses in Table 3.1 are expected frequencies under the

order-restricted RC association model obtained by this procedure.

3.2 Results of data analysis

Now we return to the analysis of Table 3.1. The estimates are summarized in Table 3.2.

The row labeled “CA” indicates the estimates by correspondence analysis, and the row

labeled “RC” indicates the maximum likelihood estimates based on the RC association

model. The additional label “(ordered)” indicates when the order restrictions were im-

posed. In Table 3.2, it is evident that ν̂1 = ν̂2 = ν̂3 in the correspondence analysis,

whereas ν̂2 = ν̂3 in the RC model approach.

The results of significance tests for independence are summarized in Table 3.3. In

the row labeled “CA” the statistic nφ̂2 is used as a test statistic, where φ̂ is the largest

canonical correlation under the order restrictions. In the row labeled “RC” the likelihood

ratio tests for independence against the RC association model are applied. The additional

label “(ordered)” again indicates the order restrictions. The p-values of the test statistics

without order restriction are calculated using (2.18) of Corollary 2.6 with p = q = 3.

The p-values of the test statistics with order restrictions were calculated by obtaining the

level probabilities we(P ), wf(Q) first, and then substituting them into (2.14) of Theorem

2.6. The empirical marginal probabilities are (p̂i·) = (206, 289, 235, 171)/901, (p̂·j) =

(62, 108, 319, 412)/901, and the corresponding level probabilities are

(we(P )) = (0.451, 0.268, 0.049), (wf(Q)) = (0.450, 0.271, 0.050),
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respectively. Because p̂i· and p̂·j are
√

n-consistent estimators of pi· and p·j , and we(P )

and wf (Q) are differentiable with respect to pi· and p·j, this method gives a
√

n-consistent

estimator of the p-value.

One finds that imposing the order restrictions makes the p-values much smaller. We

can interpret this reduction in the p-values as a reflection of the improved power of the

tests.

4 Proofs of the main results

4.1 The proof of Theorem 2.2

We begin by summarizing Chernoff’s theory for the distributions of likelihood ratio cri-

terion applied to the multinomial distribution. For simplicity, the statements below are

written in terms of vector-valued (not matrix-valued) multinomial random variables.

Theorem 4.1 Let x(t) = (x
(t)
i )1≤i≤k ∈ Rk, t = 1, . . . , n, be an i.i.d. sequence of random

vectors having all elements zero except one element one from a probability density f(x, θ) =∏k
i=1 θxi

i , θ ∈ Ω, where

Ω = {θ = (θi) ∈ Rk | θi > 0,
∑k

i=1 θi = 1}.
Let θo ∈ Ω be the true value. For j = 0, 1, let ωj be a subset of Ω, and assume that both

ωjs are locally compact and contain the true value θo. Let

T (Ω) = {θ̃ = (θ̃i) ∈ Rk | ∑k
i=1 θ̃i = 0}

be the tangent space of Ω at θo. Assume that, for j = 0, 1, ωj has the approximating cone

(tangent cone in the sense of Definition 2 of Chernoff [5] or Definition 1 of Shapiro [32])

S(ωj) ⊂ T (Ω) at θo. That is, for each ω = ωj, when θo is an accumulating point of ω, a

closed cone S(ω) ⊂ T (Ω) exists, satisfying:

(i) for any sequence yl ∈ ω \ {θo} such that liml→∞ yl = θo, infx∈S(ω) ‖x − (yl − θo)‖ =

o(‖yl − θo‖), and

(ii) for any sequence xl ∈ S(ω) \ {0} such that liml→∞ xl = 0, infy∈ω ‖xl − (y − θo)‖ =

o(‖xl‖);
when θo is an isolated point of ω, let S(ω) = {0}. Then, for n sufficiently large, MLEs

θ̂n,0, θ̂n,1 exist that maximize 
n(θ) =
∑n

t=1 log f(x(t), θ) over the sets ω0, ω1, respectively,

and the likelihood ratio test statistic for testing H0 : θ ∈ ω0 against H1 : θ ∈ ω1,

−2 log Λn = −2{
n(θ̂n,0) − 
n(θ̂n,1)},
converges in distribution to

min
θ∈S(ω0)

(z − θ)′D(θo)−1(z − θ) − min
θ∈S(ω1)

(z − θ)′D(θo)−1(z − θ) (4.1)
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as n → ∞, where D(θ) = diag(θi)1≤i≤k, z is a k × 1 random vector distributed as

Nk(0, V (θo)) with V (θ) = D(θ) − D(θ)1k1
′
kD(θ), and 1k = (1, . . . , 1)′ is a k × 1 vec-

tor consisting of ones.

Remark 4.1 A multinomial random vector y = (yi)1≤i≤k, yi =
∑n

t=1 x
(t)
i , is a sufficient

statistic for θ, and hence the MLE and the likelihood ratio criterion based on the i.i.d.

sequence x(t), t = 1, . . . , n, are equivalent to those based on y.

Proof. Under the assumptions that ωjs are locally compact and contain the true value,

the MLEs θ̂n,j ∈ ωj under Hj exist for n sufficiently large, and converge to θo with

probability one as n → ∞ (Berk [4], Example 4). From this fact and the assumption of

the existence of approximating cones, we can see that all of the assumptions of Theorem

1 of Chernoff [5] are fulfilled, and −2 log Λn is proved to converge in distribution to

min
θ∈S(ω0)

(z̃ − i(θ))′I(θo)(z̃ − i(θ)) − min
θ∈S(ω1)

(z̃ − i(θ))′I(θo)(z̃ − i(θ)), (4.2)

where i(θ) = (θ1, . . . , θk−1)
′ is the first k− 1 elements of θ, I(θ) = (δij/θi + 1/θk)1≤i,j≤k−1,

θk = 1−∑k−1
i=1 θi, is the Fisher matrix of i(θ), and z̃ is a (k−1)×1 random vector distributed

as Nk−1(0, I(θo)−1). It is easy to see that (4.1) and (4.2) have the same distribution.

In applying Chernoff’s theory, one crucial step is to find the approximating cone

of the parameter set. The following lemma gives a useful sufficient condition for the

approximating cone.

Lemma 4.1 Suppose that there exist a neighborhood of U ⊂ Ω around θo, and C1-

diffeomorphism ϕ : U → ϕ(U) ⊂ T (Ω) such that ϕ(θo) = 0, ϕ(ω ∩ U) = S ∩ ϕ(Ū),

and the differential map of ϕ at θo,

dϕ|θo : T (Ω) → T (Ω),

is the identity map. Then S is the approximating cone of ω at θ.

Proof. Write the inverse of ϕ as ϕ−1. For y ∈ ω ∩ U , infx∈S ‖x − (y − θo)‖ ≤
infy′∈ω∩U ‖ϕ(y′)− (y− θo)‖ ≤ ‖ϕ(y)− (y− θo)‖ = o(‖y− θo‖). For x ∈ S ∩ V , V = ϕ(U),

infy∈ω ‖x − (y − θo)‖ ≤ infx′∈S∩V ‖x − (ϕ−1(x′) − θo)‖ ≤ ‖x − (ϕ−1(x) − θo)‖ = o(‖x‖).

Now we return to our problem of the a × b contingency table. We first treat the case

of the RC model with both row and column variables ordinal.

The ambient parameter space is

Ω = {(pij)1≤i≤a, 1≤j≤b ∈ Ra×b | ∑ijpij = 1, pij > 0},

which is of dimension ab − 1. The true parameter is denoted by (po
ij) = (po

i·p
o
·j) ∈ Ω.

The null parameter space ω0 is the set of (pij) ∈ Ω satisfying (1.3) with φ = 0. The

alternative parameter space ω1 is the set of (pij) ∈ Ω satisfying (1.3) with the order
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restriction (1.4). Because both ω0 and ω1 are locally compact and contain the true pa-

rameter (po
ij), the MLEs under H0 and H1 exist and are consistent. We will proceed

by determining the approximating cones. The tangent space of Ω at (po
ij) is defined by

T (Ω) = {(pij)1≤i≤a, 1≤j≤b ∈ Ra×b | ∑ij pij = 0}. Define a map ϕ : Ω → T (Ω) by

(pij)1≤i≤a, 1≤j≤b 	→
(
po

ij log
pij

po
ij

−∑
ij

po
ij log

pij

po
ij

)
1≤i≤a, 1≤j≤b

.

Without loss of generality, we put the side conditions for the parameters in (1.3) as

∑
i p

o
i·µi = 0,

∑
j po

·jβj =
∑

j po
·jνj = 0 (4.3)

instead of (1.2). Let po
ij = exp(αo

i + βo
j ),

∑
j po

·jβ
o
j = 0. It is easy to see that the map ϕ is

one-to-one, ϕ(po
ij) = 0, and its differential map dϕ at (po

ij) is the identity map. Therefore,

the approximating cone of ω0 at po
ij is obtained as the cone generated by the set ϕ(ω0)

(the smallest cone containing the set ϕ(ω0)). Noting the side conditions (4.3),

S(ω0) = the cone generated by ϕ(ω0)

= {po
i·p

o
·j(αi − αo

i + βj − βo
j ) −

∑
ij po

i·p
o
·j(αi − αo

i + βj − βo
j ) |

∑
j po

·jβj = 0}
= {(α̃ip

o
·j + po

i·β̃j) | ∑i α̃i =
∑

j β̃j = 0}.

In the last equation we put α̃i = po
i·(αi −αo

i )−
∑

i p
o
i·(αi−αo

i ), β̃·j = po
j(βj −βo

j ). Similarly

the approximating cone of ω1 at po
ij is obtained as

S(ω1) = {po
i·p

o
·j(αi − αo

i + βj − βo
j + φµiνj) −∑

ij po
i·p

o
·j(αi − αo

i + βj − βo
j + φµiνj)

| side conditions (4.3)}
= {(α̃ip

o
·j + po

i·β̃j + φ̃(po
i·µ̃i)(p

o
·j ν̃j)) | ∑i α̃i =

∑
j β̃j =

∑
i p

o
i·µ̃i =

∑
j po

·j ν̃j = 0,∑
i p

o
i·µ̃

2
i =

∑
j po

·j ν̃
2
j = 1, φ̃ ≥ 0, µ̃1 ≤ · · · ≤ µ̃a, ν̃1 ≤ · · · ≤ ν̃b}.

Let p = vec(pij) = (p11, p12, . . . , pab)
′ be the lexicographically arranged parameter. At

the true value po = vec(po
i·p

o
·j),

D(po) = diag(pij)ab×ab

∣∣∣
pij=po

ij

= P ⊗ Q,

V (po) = D(p) − D(p)1ab1
′
abD(p)

∣∣∣
pij=po

ij

= P ⊗ Q − P1a1
′
aP ⊗ Q1b1

′
bQ,

where P = diag(po
i·)a×a, and Q = diag(po

·j)b×b. The inverse of D(po) is given by

D(po)−1 = P−1 ⊗ Q−1.

Now we are ready to derive the limiting null distribution of the likelihood ratio statistic

with the help of Theorem 4.1. Let Z be an a × b Gaussian random matrix with mean

matrix M such that

vec(Z) ∼ Nab(vec(M), P ⊗ Q − P1a1
′
aP ⊗ Q1b1

′
bQ),

19



and let

L(M) = vec(Z − M)′D(po)−1 vec(Z − M)

= tr(P−1(Z − M)Q−1(Z − M)′) = ‖P− 1
2 (Z − M)Q− 1

2‖2,

where P− 1
2 = diag(1/

√
po

i·), Q− 1
2 = diag(1/

√
po·j), and ‖ · ‖ is the matrix norm. Then our

required limiting distribution is expressed as

min
M∈S(ω0)

L(M) − min
M∈S(ω1)

L(M).

Note that M ∈ S(ω1) is written as

M = α1′bQ + P1aβ
′ + φPµν ′Q

with α = (α1, . . . , αa)
′, β = (β1, . . . , βb)

′, µ = (µ1, . . . , µa)
′, and ν = (ν1, . . . , νb)

′. Using

the relations 1′aα = 1′bβ = 1′aPµ = 1′bQν = 0, µ′Pµ = ν ′Qν = 1, L(M) is decomposed as

L(M) = ‖P− 1
2 (Z2 − α1′bQ)Q− 1

2‖2 + ‖P− 1
2 (Z3 − P1aβ

′)Q− 1
2‖2

+‖P− 1
2 (Z1 − φPµν ′Q)Q− 1

2‖2 + ‖P− 1
2 Z4Q

− 1
2‖2,

where

Z1 = (Ia − P1a1
′
a)Z(Ib − 1b1

′
bQ), Z2 = (Ia − P1a1

′
a)Z(1b1

′
bQ),

Z3 = (P1a1
′
a)Z(Ib − 1b1

′
bQ), Z4 = (P1a1

′
a)Z(1b1

′
bQ).

Therefore

min
M∈S(ω0)

L(M) − min
M∈S(ω1)

L(M) = ‖P− 1
2 Z1Q

− 1
2‖2 − min

φ≥0, µ, ν
‖P− 1

2 (Z1 − φPµν ′Q)Q− 1
2‖2

= ‖Z̃1‖2 − min
φ≥0, µ̃, ν̃

‖Z̃1 − φµ̃ν̃ ′‖2

= max
µ̃, ν̃

(
max{µ̃′Z̃1ν̃, 0}2

)

= max
{
max
µ̃, ν̃

(µ̃′Z̃1ν̃), 0
}2

(4.4)

with P− 1
2 Z1Q

− 1
2 = Z̃1, P

1
2 µ = µ̃, Q

1
2 ν = ν̃. The constraints of the maximization in (4.4)

are

1′aP
1
2 µ̃ = 1′

bQ
1
2 ν̃ = 0, µ̃′µ̃ = ν̃ ′ν̃ = 1

and

µ̃1/
√

po
1· ≤ · · · ≤ µ̃a/

√
po

a·, ν̃1/
√

po·1 ≤ · · · ≤ ν̃b/
√

po
·b.

Because

vec(Z̃1) ∼ Nab

(
0, (Ia − P

1
2 1a1

′
aP

1
2 ) ⊗ (Ib − Q

1
2 1b1

′
bQ

1
2 )
)
,

the distribution of the maximum maxµ̃, ν̃(µ̃
′Z̃1ν̃) in (4.4) is shown to be reduced to the

distribution of T in (2.6) with P , Q given in Corollary 2.1.

The proof for the order restrictions (1.4) is completed. The proof for the order restric-

tions (1.5) is completely similar and is omitted.
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4.2 The proof of Theorem 2.6

The proof is divided into four parts. In the first three sections (Sections 4.2.1–4.2.3) we

prove the theorem when P and Q are polyhedral. Then, in Section 4.2.4, the results

are extended to the non-polyhedral case by considering sequences of spherical polyhedra

approximating P and Q. Throughout this section we denote by “⊕” the orthogonal direct

sum.

4.2.1 Tangent cones and their duals

Let E be a face of the spherical polyhedron P of dimension e− 1, 0 ≤ e− 1 ≤ p− 1. Fix

a relative interior point v of E. The tangent cone of P at v is given by

Sv(P ) = Tv(E) ⊕ Cv,

where Tv(E) is the tangent space of E at v, and Cv is a convex cone contained in the

orthogonal compliment space

Nv(E) = (span{v} ⊕ Tv(E))⊥ ⊂ Rp.

The dual cone of Sv(P ) in Rp is

Sv(P )∗ = span{v} ⊕ C̃v with C̃v = {y ∈ Nv(E) | y′x ≤ 0, ∀x ∈ Cv}.

Let F be a face of Q of dimension f − 1, 0 ≤ f − 1 ≤ q − 1. Fix a relative interior

point w of F . Define Tw(F ) and

Nv(F ) = (span{w} ⊕ Tw(F ))⊥ ⊂ Rq

as above. Then the tangent cone of Q at w and its dual in Rq are written as

Sw(Q) = Tw(F ) ⊕ Dw and Sw(Q)∗ = span{w} ⊕ D̃w,

respectively.

Let

E ⊗ F = {v ⊗ w ∈ Rpq | v ∈ E, w ∈ F}.
P ⊗ Q is a disjoint union of smooth manifolds of the form of E ⊗ F . The tangent space

of E ⊗ F at a relative interior point v ⊗ w is

Tv⊗w(E ⊗ F ) = Tv(E) ⊗ {w} ⊕ {v} ⊗ Tw(F ),

which is of dimension e + f − 2.

Noting that for two points v1 ⊗w1 ∈ P ⊗Q and v ⊗w ∈ E ⊗F that are close to each

other,

v1 ⊗ w1 − v ⊗ w
.
= (v1 − v) ⊗ w + v ⊗ (w1 − w),
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we see that the tangent cone of E ⊗ F at v ⊗ w is

Sv⊗w(P ⊗ Q) = Sv(P ) ⊗ {w} ⊕ {v} ⊗ Sw(Q)

= Tv(E) ⊗ {w} ⊕ Cv ⊗ {w} ⊕ {v} ⊗ Tw(F ) ⊕ {v} ⊗ Dw

= Tv⊗w(E ⊗ F ) ⊕ Cv ⊗ {w} ⊕ {v} ⊗ Dw.

The dual cone is given by

Sv⊗w(P ⊗ Q)∗ = span{v ⊗ w} ⊕ Nv⊗w(P ⊗ Q),

where

Nv⊗w(P ⊗ Q)

= Tv(E) ⊗ Tw(F ) ⊕ Tv(E) ⊗ Nw(F ) ⊕ Nv(E) ⊗ Tw(F ) ⊕ Nv(E) ⊗ Nw(F )

⊕C̃v ⊗ {w} ⊕ {v} ⊗ D̃w. (4.5)

This is of dimension

dim Nv⊗w(P ⊗ Q)

= (e − 1)(f − 1) + (e − 1)(q − f) + (p − e)(f − 1) + (p − e)(q − f)

+(p − e) + (q − f)

= pq − e − f + 1. (4.6)

4.2.2 The second fundamental form

Let v = v(t) ∈ E, t = (ti)1≤i≤e−1, be a local coordinate system of E, and let w = w(u) ∈ F ,

u = (ui)1≤i≤f−1, be a local coordinate system of F . Then v(t) ⊗ w(u) gives a local

coordinate system of E ⊗ F around the relative interior point v ⊗ w.

Let vi = vi(t) = ∂v(t)/∂ti, and wi = wi(u) = ∂w(u)/∂ui. Then the tangent space of

E ⊗ F is given by

Tv⊗w(E ⊗ F ) = Tv(E) ⊗ {w} ⊕ {v} ⊗ Tw(F )

= span{vi ⊗ w | 1 ≤ i ≤ e − 1} ⊕ span{v ⊗ wi | 1 ≤ i ≤ f − 1}.
The metric

G =

(
(v′

ivj)1≤i,j≤e−1 0

0 (w′
kwl)1≤k,l≤f−1

)
(4.7)

of E ⊗ F is an (e + f − 2) × (e + f − 2) block diagonal matrix. This implies that the

volume element of E ⊗ F at v ⊗ w is dv dw, where dv is the volume element of E at v,

and dw is the volume element of F at w.

The second derivatives of v(t)⊗w(u) are written as an (e+f −2)× (e+f −2) matrix

with elements p × q matrices(
(vij ⊗ w)1≤i,j≤e−1 (vi ⊗ wl)1≤i≤e−1, 1≤l≤f−1

(vj ⊗ wk)1≤k≤f−1, 1≤j≤e−1 (v ⊗ wkl)1≤k,l≤f−1

)
. (4.8)
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Let ṽa, 1 ≤ a ≤ p − e, be a basis of Nv(E), and let w̃b, 1 ≤ b ≤ q − f , be a basis of

Nw(F ). Consider inner products of the elements of (4.8) and the elements of Nv⊗w(P⊗Q).

Note that the bases of Nv⊗w(P ⊗ Q) are vi ⊗ wj, vi ⊗ w̃a, ṽa ⊗ wi, ṽa ⊗ w̃b, ṽa ⊗ w, and

v ⊗ w̃a (see (4.5)). Here it is true by definition that v′vi = 0, v′ṽa = 0, v′
iṽa = 0, and

w′wi = 0, w′w̃a = 0, w′
iw̃a = 0. Because P is a spherical polyhedron, Tv(E) ⊕ span{v}

becomes the linear hull of E, which is invariant with respect to a choice of the relative

interior point v ∈ E. Then Nv(E) is independent of v, and hence we can choose the bases

ṽa = ṽa(t) independent of t. Therefore

v′
ij ṽa = (∂vi/∂tj)′ṽa = ∂(v′

iṽa)/∂ti = 0.

Similarly w′
ijw̃a = 0. Only the inner products of the form

(vi ⊗ wl)
′(vj ⊗ wk) = (v′

ivj) (w′
kwl)

must be considered. (This is because principal directions of E ⊗ F are restricted in

Tv(E) ⊗ Tw(F ).)

Let v̄i, 1 ≤ i ≤ e − 1, be an orthonormal basis of Tv(E) such that v̄′
iv̄j = δij. Then

a nonsingular matrix A exists such that (v1, . . . , ve−1) = (v̄1, . . . , v̄e−1)A. Let w̄i, 1 ≤
i ≤ f − 1, be an orthonormal basis of Tw(F ). A nonsingular matrix B exists such that

(w1, . . . , wf−1) = (w̄1, . . . , w̄f−1)B. The metric G in (4.7) is written as

G =

(
A 0

0 B

)′ (
A 0

0 B

)
.

Write an element of Nv⊗w(P ⊗ Q) as

r =
e−1∑
m=1

f−1∑
n=1

r(m, n)(v̄m ⊗ w̄n) + r̃, (4.9)

where r̃ is an element orthogonal to Tv(E) ⊗ Tw(F ). Let R = (r(m, n))1≤m≤e−1, 1≤n≤f−1

be an (e− 1)× (f − 1) matrix. Then the inner product of elements of (4.8) and r in (4.9)

is (
0 (

∑
m,n r(m, n)(v′

iv̄m)(w′
lw̄n)) 1≤i≤e−1

1≤l≤f−1

(
∑

m,n r(m, n)(v′
j v̄m)(w′

kw̄n)) 1≤k≤f−1
1≤j≤e−1

0

)

=

(
0 A′RB

B′R′A 0

)
=

(
A 0

0 B

)′ (
0 R

R′ 0

)(
A 0

0 B

)
.

Therefore the second fundamental form of E ⊗ F at v ⊗ w with respect to the normal

direction r in (4.9) is

H(v ⊗ w; r) =

(
0 R

R′ 0

)
.
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4.2.3 Evaluation of integrals

Finally we evaluate the integral (2.13). In (2.13) we consider E ⊗ F instead of ∂Md with

d = e + f − 2. The contribution of the integral with respect to E ⊗ F is

e+f−2∑
k=0

1

Ωe+f−1−kΩpq−e−f+1+k

∫
s∈E⊗F

ds
∫

t∈Ns(P⊗Q)∩Spq−1
dt trkH(s, t) × Ḡe+f−1−k(x

2).

(4.10)

We begin by evaluating the integral

∫
s∈E⊗F

ds = Vol(E ⊗ F ).

As we have seen, the volume element of E ⊗ F at v ⊗ w is the product measure of the

volume elements dv and dw at v ∈ E and w ∈ F . Hence if either P or Q is not symmetric

with respect to the origin, then the map (v, w) (∈ P×Q) 	→ v⊗w (∈ P⊗Q) is one-to-one,

and hence ∫
s∈E⊗F

ds =
∫

E
dv ×

∫
F

dw = Ωe Ωf β(E) β(F ), (4.11)

where

β(E) =
Vol(E)

Vol(lin(E) ∩ Sp−1)
, β(F ) =

Vol(F )

Vol(lin(F ) ∩ Sq−1)

are internal angles. When both P and Q are symmetric with respect to the origin, then

the map (v, w) 	→ v⊗w is two-to-one, and a multiplier 1/2 is required in the middle and

right hand sides of (4.11).

Next we consider the integral

∫
t∈Ns(P⊗Q)∩Spq−1

dt trkH(s, t).

As in Kuriki and Takemura [23], we evaluate this by taking expectations with respect to

normal random variables.

Assume that t ∈ Rpq is distributed uniformly on the (pq−e−f)-dimensional unit sphere

restricted in the linear hull lin(Ns(P ⊗ Q)) (see (4.6)). The density of t is dt/Ωpq−e−f+1,

where dt is the volume element of lin(Ns(P ⊗Q))∩Spq−1 at t. Assume that y2 is a random

variable distributed as χ2
pq−e−f+1 independent of t. Then y×t has a multivariate standard

normal distribution restricted in the linear subspace lin(Ns(P ⊗ Q)). Therefore

∫
t∈Ns(P⊗Q)∩Spq−1

dt trkH(s, t)

= Ωpq−e−f+1 E[I(t ∈ Ns(P ⊗ Q)) trkH(s, t)]

= Ωpq−e−f+1
E[I(y × t ∈ Ns(P ⊗ Q)) trkH(s, y × t)]

E[yk]

=
Ωpq−e−f+1+k

(2π)
k
2

E[I(y × t ∈ Ns(P ⊗ Q))] E[trkH(s, y × t)], (4.12)
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where I(·) is the indicator function. We used Ωd/E[χk
d] = Ωd+k/(2π)

k
2 in the last equality.

Moreover,

E[I(y × t ∈ Ns(P ⊗ Q))] = γ(E)γ(F ), (4.13)

where

γ(E) =
Vol(E∗)

Vol(lin(E)⊥ ∩ Sp−1)
, γ(F ) =

Vol(F ∗)
Vol(lin(F )⊥ ∩ Sq−1)

,

and

E∗ = {v ∈ lin(E)⊥ ∩ Sp−1 | v′ṽ ≤ 0, ∀ṽ ∈ P},
F ∗ = {w ∈ lin(F )⊥ ∩ Sq−1 | w′w̃ ≤ 0, ∀w̃ ∈ Q},

are external angles. Let R = (rij) be an (e − 1) × (f − 1) random matrix such that all

elements rijs are independent standard normal random variables. Then

E[trkH(s, y × t)] = E
[
trk

(
O R

R′ 0

)]

=

{
(−1)k/2

(
e−1
k/2

) (
f−1
k/2

)
(k/2)!, for k even,

0, for k odd
(4.14)

(Kuriki and Takemura [23]).

Combining (4.11)–(4.14), the contribution (4.10) of E ⊗ F becomes

2(min(e,f)−1)∑
k=0, k:even

Ωe Ωf

(2π)
k
2 Ωe+f−1−k

β(E) β(F ) γ(E)γ(F )

×(−1)k/2

(
e − 1

k/2

)(
f − 1

k/2

)
(k/2)! Ḡe+f−1−k(x

2). (4.15)

Summing (4.15) over 0 ≤ e ≤ p and 0 ≤ f ≤ q, and noting that

we(P ) =
∑

E: dimE=e−1

β(E) γ(E), wf(Q) =
∑

F : dim F=f−1

β(F ) γ(F )

(Takemura and Kuriki [34]), we obtain the expression (2.14).

4.2.4 Approximation by sequences of spherical polyhedra

Finally we prove that (2.14) still holds when P and Q are non-polyhedral.

Define a distance between two subsets M1, M2 ∈ Sn−1 by

δ(M1, M2) = inf{θ ≥ 0 | M1 ⊂ (M2)θ, M2 ⊂ (M1)θ}.
This is the Hausdorff distance in Rn between cone(Mi) ∩ Bn, i = 1, 2, where cone(Mi)

is the smallest cone containing Mi, and Bn is the unit ball in Rn (Takemura and Kuriki

[34]). The following theorem states the continuity of the volume of the tube with respect

to the distance δ(·, ·). This is a spherical version of Theorems 5.6 and 5.9 of Federer [12].

The proof is parallel to that of Federer [12] and is omitted.
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Theorem 4.2 Suppose that ε > 0. Let Ai, i = 1, 2, . . ., and B be closed subsets of Sn−1

with the critical radii θc(Ai), θc(B) ≥ ε such that δ(Ai, B) → 0 as i → ∞. Assume that

the volume of the tube around Ai is written as

Vol((Ai)θ) = Ωn

n∑
e=1

we(Ai)B̄ 1
2
e, 1

2
(n−e)(cos2 θ), θ ≤ θc(Ai).

Then the limits we(Ai) → we(B), i → ∞ exist, and the volume of tube around B is written

as

Vol(Bθ) = Ωn

n∑
e=1

we(B)B̄ 1
2
e, 1

2
(n−e)(cos2 θ), θ ≤ θc(B).

Lemma 4.2 Let P, P̃ ⊂ Sp−1, Q, Q̃ ⊂ Sq−1. Then

δ(P ⊗ Q, P̃ ⊗ Q̃) ≤ 2 max{δ(P, P̃ ), δ(Q, Q̃)}.

Proof. Assume that δ(P, P̃ ) ≤ c, δ(Q, Q̃) ≤ c. Let x ∈ Pc, y ∈ Qc. Because x′v ≥
cos(c), y′w ≥ cos(c), ∃v ∈ P , ∃w ∈ Q, it is true that (x ⊗ y)′(v ⊗ w) = (x′v)(y′w) ≥
cos2(c) ≥ cos(2c). This implies x ⊗ y ∈ (P ⊗ Q)2c. Therefore (P̃ ⊗ Q̃) ⊂ (Pc ⊗ Qc) ⊂
(P ⊗ Q)2c, (P ⊗ Q) ⊂ (P̃ ⊗ Q̃)2c, and δ(P ⊗ Q, P̃ ⊗ Q̃) ≤ 2c follows.

By the spherical convexity of P and Q, sequences of spherical polyhedra Pi, Qi, i =

1, 2, . . . exist such that δ(Pi, P ) → 0, δ(Qi, Q) → 0 as i → ∞ (Takemura and Kuriki

[34], Lemma 1.2). By Lemma 4.2, Pi ⊗ Qi ⊂ Rpq, i = 1, 2, . . ., is a sequence such that

δ(Pi ⊗ Qi, P ⊗ Q) → 0 as i → ∞.

Let φ(Pi) and φ(Qi) be the diameters of Pi and Qi. Because |φ(Pi)−φ(P )| ≤ 2δ(Pi, P ),

|φ(Qi) − φ(Q)| ≤ 2δ(Qi, Q), it is true that φ(Pi) → φ(P ), φ(Qi) → φ(Q). It follows from

Theorem 2.7 that the critical radius θc(Pi ⊗ Qi) converges to θc(P ⊗ Q) (> 0).

We have seen that the assumptions of Theorem 4.2 are fulfilled. We can conclude that

the expression (2.14) is valid for non-polyhedral cones P and Q.

4.3 The proof of Theorem 2.7

We evaluate the critical radius θc by (2.10). In this proof, the point v ⊗ w ∈ Rpq is

represented as a matrix vw′ ∈ Rp×q. With this change, we introduce a new symbol “�”

defined by

A � B = {vw′ ∈ Rp×q | v ∈ A, w ∈ B} for A ⊂ Rp, B ⊂ Rq.

As in Section 4.2, we denote the orthogonal direct sum by “⊕”.

Let Z be a point in Rp×q. Let Nv(P ) = Sv(P )∗ ∩ span{v}⊥ ⊂ Rp and Nw(Q) =

Sw(Q)∗ ∩ span{w}⊥ ⊂ Rq. By (4.5),

Nvw′(P � Q) = (span{v}⊥ � span{w}⊥) ⊕ Nv(P )w′ ⊕ vNw(Q)′,
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where

Nv(P )w′ = {ṽw′ | ṽ ∈ Nv(P )}, vNw(Q)′ = {vw̃′ | w̃ ∈ Nw(Q)}.
Therefore the orthogonal projection of Z onto Nvw′(P � Q) is given by

P(Z | Nvw′) = (I − vv′)Z(I − ww′) + P(Z | Nv(P )w′) + P(Z | vNw(Q)′). (4.16)

Here the second term in the right hand side of (4.16) above is rewritten as

P(Zw | Nv(P ))w′, (4.17)

because for x ∈ Nv(P ),

‖Z − xw′‖2 = ‖Z(I − ww′)‖2 + ‖(Zw − x)w′‖2

= ‖Z(I − ww′)‖2 + ‖Zw − x‖2.

(‖ · ‖ appearing in the second term of the right hand side means the norm for vectors.

The other ‖ · ‖s mean the norms for matrices.) Similarly the third term in the right hand

side of (4.16) is vP(Z ′v | Nv(Q))′.
Set Z = s − t = ṽw̃′ − vw′, where ṽw̃′, vw′ ∈ P � Q. Then (4.17) is reduced to

P((w̃′w)ṽ − v | Nv(P ))w′. Noting that

‖(I − vv′)(ṽw̃′ − vw′)(I − ww′)‖2 = (1 − (ṽ′v)2)(1 − (w̃′w)2),

‖ṽw̃′ − vw′‖2 = 2(1 − (ṽ′v)(w̃′w)),

the left hand side of (2.10) is reduced to

inf
ṽ,v∈P, w̃,w∈Q

(1 − τρ)2

(1 − τ2)(1 − ρ2) + ‖P(ρṽ − v | Nv(P ))‖2 + ‖P(τw̃ − w | Nw(Q))‖2

(4.18)

with τ = ṽ′v, ρ = w̃′w.

Case I. Consider the case φ(P ) ≤ π/2. This is equivalent to τ = ṽ′v ≥ 0, ∀ṽ, v ∈ P .

The smallest cone containing Q is denoted by cone(Q). Because τ ≥ 0, τw̃ ∈ cone(Q).

On the other hand, because Nw(Q) is the normal cone of the convex cone(Q) at w, we

have

P(τw̃ − w | Nw(Q)) = 0.

Therefore, (4.18) is reduced to

inf
ṽ,v∈P, w̃,w∈Q

(1 − τρ)2

(1 − τ2)(1 − ρ2) + ‖P(ρṽ − v | Nv(P ))‖2
. (4.19)

We evaluate the infimum in (4.19) by examining the cases ρ > 0 and ρ ≤ 0 separately.
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The case ρ > 0. Because P(ρṽ − v | Nv(P )) = 0, the argument of the infimum in

(4.19) becomes
(1 − τρ)2

(1 − τ2)(1 − ρ2)
.

The infimum of this is one, which is attained as |τ − ρ| → 0 with τ, ρ �= 1. (Lemma 4.5

of Kuriki and Takemura [23]). Hence if a sequence ṽ′w̃ → v′w > 0 with ṽ �= v, w̃ �= w

exists, then the infimum is attained. This is possible when dim P ≥ 1 and dim Q ≥ 1.

The case ρ ≤ 0. Because Nv(P ) ⊂ span{v}⊥,

‖P(ρṽ − v | Nv(P ))‖2 ≤ ‖P(ρṽ − v | span{v}⊥)‖2 = ‖(I − vv′)(ρṽ − v)‖2

= ρ2(1 − τ2). (4.20)

Therefore the argument of the infimum in (4.19) is bounded below by

(1 − τρ)2

(1 − ρ2)(1 − τ2) + ρ2(1 − τ2)
=

(1 − τρ)2

1 − τ2
≥ 1

1 − τ2
≥ 1.

Now we have proved that (4.19) is equal to one, and hence tan2 θc = 1, θc = π/4.

Case II. Consider the case φ(P ) > π/2 and φ(Q) > π/2. Both τ = ṽ′v and ρ = w̃′w
can take minus values. According to (4.20), the argument of the infimum in (4.18) with

τ, ρ < 0 is bounded below by

(1 − τρ)2

(1 − ρ2)(1 − τ2) + ρ2(1 − τ2) + τ 2(1 − ρ2)
=

1 − τρ

1 + τρ
≥ 1 − cos φ(P ) cosφ(Q)

1 + cos φ(P ) cosφ(Q)
.

The right hand side is less than one. Together with the examinations in Case I, we have

tan2 θc ≥ 1 − cos φ(P ) cosφ(Q)

1 + cos φ(P ) cosφ(Q)
. (4.21)

In the following we see that the equality in (4.21) holds.

Let v, ṽ ∈ P be a pair of points such that cos−1(ṽ′v) = φ(P ). Let w, w̃ ∈ Q be a pair

of points such that cos−1(w̃′w) = φ(Q). Then τ = cos φ(P ) < 0, ρ = cos φ(Q) < 0. Here

we claim that

P(ρṽ − v | span{v}⊥) = ρ(ṽ − τv) ∈ Nv(P ).

Assume that ρ(ṽ − τv) �∈ Nv(P ). Because ρ < 0 and Nv(P ) = Sv(cone(P ))∗, u ∈
cone(P ) exists such that (ṽ − τv)′u < 0. Because cone(P ) is convex,

vε =
(1 − ε)v + εu

‖(1 − ε)v + εu‖ ∈ P, for 0 ≤ ε ≤ 1.

Let h(ε) = (ṽ′vε)
2 be a function in ε ∈ [0, 1]. Then (d/dε)h(0+) = 2τ(ṽ − τv)′u > 0. This

implies that for a sufficiently small ε > 0, 0 > ṽ′v > ṽ′vε, and cos−1(ṽ′v) < cos−1(ṽ′vε).

This contradicts the assumption that cos−1(ṽ′v) = φ(P ).
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Therefore, we have

P(ρṽ − v | Nv(P )) = P(P(ρṽ − v | span{v}⊥ | Nv(P ))) = ρ(ṽ − τv),

and P(τw̃ − w | Nw(Q)) = τ(w̃ − ρw). Substituting them into the argument of the

infimum in (4.18), we see that the lower bound in (4.21) is really attained.
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Figure 2.1. The upper tail probability P (T ≥ x).
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Table 3.1. Income and job satisfaction (n = 901).

Income
(dollars)

∖
Job
satisfaction

Very
dissatisfied

Little
dissatisfied

Moderately
satisfied

Very
satisfied

< 6000 20 (19.7) 24 (26.5) 80 (78.2) 82 (81.6)
6000 − 15000 22 (22.2) 38 (35.8) 104 (105.7) 125 (125.3)
15000 − 25000 13 (13.3) 28 (27.4) 81 (80.9) 113 (113.4)

> 25000 7 (6.8) 18 (18.4) 54 (54.2) 92 (91.7)
Note : From Agresti [1]. Estimated frequencies are in parentheses.

Table 3.2. Estimates of φ, µi, νj .

φ̂ µ̂1 µ̂2 µ̂3 µ̂4 ν̂1 ν̂2 ν̂3 ν̂4

CA 0.1125 –1.31 –0.44 0.56 1.56 –2.55 0.89 –1.05 0.39
CA (ordered) 0.0979 –1.21 –0.51 0.48 1.65 –0.92 –0.92 –0.92 1.09
RC 0.1161 –1.26 –0.48 0.51 1.62 –2.63 –0.37 –0.57 0.93
RC (ordered) 0.1160 –1.24 –0.49 0.51 1.63 –2.63 –0.52 –0.52 0.93

Table 3.3. Tests for independence.

test statistic df p-value

CA 11.40 0.0945

CA (ordered) 8.64 0.0254

RC 11.59 0.0882

RC (ordered) 11.55 0.0069

Saturated 12.04 9 0.2112

Pearson χ2 11.99 9 0.2140

CA : Test based on n φ̂2

RC : LRT against the RC model
Saturated : LRT against the saturated model
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