Reproducing Kernel Exponential Manifold: Estimation and Geometry

Kenji Fukumizu Institute of Statistical Mathematics, ROIS Graduate University of Advanced Studies

Mathematical Explorations in Contemporary Statistics May 19-20, 2008. Sestri Levante, Italy

Outline

- Introduction
- Reproducing kernel exponential manifold (RKEM)
- Statistical asymptotic theory of singular models
- Concluding remarks

Introduction

Maximal Exponential Manifold

Maximal exponential manifold (P&S'95)

 A Banach manifold is defined so that the cumulant generating function is well-defined on a neighborhood of each probability density.

 $f_u = \exp(u - \Psi_f(u))f, \qquad \Psi_f(u) = \log E_f[e^u] < \infty$

• Orlicz space $L_{\cosh-1}(f) = \left\{ u \mid \exists \alpha > 0 \text{ s.t. } E_f[e^{\alpha u}] < \infty \text{ and } E_f[e^{-\alpha u}] < \infty \right\}$ This space is (perhaps) the most general to guarantee the finiteness of the cumulant generating functions around a point.

Estimation with Data

Estimation with a finite sample

 A finite dimensional exponential family is suitable for the maximum likelihood estimation (MLE) with a finite sample.

$$X_1, ..., X_n$$
: i.i.d. $\sim f_0 \mu$ $X_n = (X_1, ..., X_n)$

MLE: θ that maximizes

$$\mathcal{U}_n(\theta; \mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \left\{ \sum_{a=1}^m \theta^a u_a(\mathbf{X}_i) - \Psi(\theta) \right\}$$

Is MLE extendable to the maximal exponential manifold?

$$\ell_{n}(u; \mathbf{X}_{n}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ u(X_{i}) - \Psi_{f}(u) \right\}$$

 \Rightarrow But, the function value $u(X_i)$ is not a continuous functional on u in the exponential manifold.

Reproducing kernel exponential manifold

Reproducing Kernel Hilbert Space

Reproducing kernel Hilbert space (RKHS)

 $e_x: \mathcal{H} \to \mathbf{R}, \quad f \mapsto f(x)$

is continuous for each $x \in \Omega$.

□ A Hilbert space \mathcal{H} consisting of functions on Ω is a RKHS if and only if there exists $k(\cdot, x) \in \mathcal{H}$ (reproducing kernel) such that

$$\langle k(\cdot, x), f \rangle_{\mathcal{H}} = f(x) \qquad \forall f \in \mathcal{H}, \ x \in \Omega.$$

(by Riesz's lemma)

Reproducing Kernel Hilbert Space II

Positive definite kernel and RKHS

A symmetric kernel $k: \Omega \times \Omega \rightarrow \mathbf{R}$ is said to be positive definite, if for any $x_1, \dots, x_n \in \Omega$ and $c_1, \dots, c_n \in \mathbf{R}$,

 $\sum_{i,j=1}^{n} c_i c_j k(x_i, x_j) \ge 0,$

Theorem (construction of RKHS)

If $k: \Omega \times \Omega \rightarrow \mathbf{R}$ is positive definite, there uniquely exists a RKHS \mathcal{H}_k on Ω such that

- (1) $k(\cdot, x) \in \mathcal{H}$ for all $x \in \Omega$,
- (2) the linear hull of $\{k(\cdot, x) \mid x \in \Omega\}$ is dense in \mathcal{H}_k ,

(3) $k(\cdot, x)$ is a reproducing kernel of \mathcal{H}_k , i.e.,

$$\langle k(\cdot, x), f \rangle_{\mathcal{H}_k} = f(x) \qquad \forall f \in \mathcal{H}_k, \ x \in \Omega.$$

Reproducing Kernel Hilbert Space III

Some properties

- □ If the pos. def. kernel *k* is of C^r , so is every function in \mathcal{H}_k .
- □ If the pos. def. kernel *k* is bounded, so is every function in \mathcal{H}_k .
- Examples: positive definite kernels on R^m
 - Euclidean inner product

$$k(x, y) = x^T y \qquad \mathcal{H}_k \cong \mathbf{R}^m$$

Gaussian RBF kernel

$$k(x, y) = \exp\left(-\left\|x - y\right\|^2 / \sigma^2\right)$$
 dim $\mathcal{H}_k = \infty$

Polynomial kernel

$$k(x, y) = (x^T y + c)^d$$
 $(c \ge 0, d \in \mathbb{N})$ $\mathcal{H}_k = \{\text{polyn. deg } \le d\}$

Exponential Manifold by RKHS

Definitions

Ω: topological space. μ : Borel probability measure on Ω s.t. supp $\mu = \Omega$. *k* : continuous pos. def. kernel on Ω such that \mathcal{H}_k contains 1 (constants).

 $M_{\mu}(k) \coloneqq \left\{ f: \Omega \to \mathbf{R} / f: \text{continuous, } f(x) > 0 \; (\forall x \in \Omega), \; \int f d\mu = 1, \\ \exists \delta > 0, \; \int e^{\delta \sqrt{k(x,x)}} f(x) d\mu(x) < \infty \right\}$

 $M_{\mu}(k)$ is provided with a Hilbert manifold structure.

Note: If
$$|| u || < \delta$$
, $E_f[e^{u(X)}] = E_f[e^{\langle u, k(\cdot, X) \rangle}] \le E_f[e^{||u|| \sqrt{k(X, X)}}] < \infty$.

Tangent space

$$T_{f} \coloneqq \left\{ u \in \mathcal{H}_{k} \mid E_{f}[u(X)] = 0 \right\} \qquad \text{closed subspace of } \mathcal{H}_{k}$$

Exponential Manifold by RKHS II

Local coordinate

For $f \in M_{\mu}(k)$, $W_f \coloneqq \left\{ u \in T_f \mid \exists \delta > 0, E_f[e^{u(X) + \delta \sqrt{k(X,X)}}] < \infty \right\} \subset T_f$

Then, for any $u \in W_f$

$$f_u \coloneqq \exp(u - \Psi_f(u)) f \in M_\mu(k).$$

Define

 $\xi_f : W_f \to M_\mu(k), \quad u \mapsto f_u \quad \text{(one-to-one)} \quad \mathcal{E}_f \coloneqq \xi_f(W_f)$ $\varphi_f : S_f \to W_f, \quad \varphi_f = \xi_f^{-1} \quad \Rightarrow \text{ works as a local coordinate}$

Lemma

(1)
$$W_f$$
 is an open subset of T_f .
(2) $g \in \mathcal{E}_f \iff \mathcal{E}_f = \mathcal{E}_g$.

Exponential Manifold by RKHS III

Reproducing Kernel Exponential Manifold (RKEM)

<u>Theorem</u>. The system $\{(\mathcal{E}_f, \varphi_f)\}_{f \in M_{\mu}(k)}$ is a C^{∞} -atlas of $M_{\mu}(k)$.

coordinate $\varphi_g \circ \varphi_f^{-1}(u) = \log \frac{\exp(u - \Psi_f(u))f}{g} - E_g \left[\log \frac{\exp(u - \Psi_f(u))f}{g} \right]$ transform $= u + \log \frac{f}{g} - E_g \left[u + \log \frac{f}{g} \right]$

- A structure of Hilbert manifold is defined on $M_{\mu}(k)$ with Riemannian metric $E_f[uv]$.
- Likelihood functional is continuous.
- The function u(x) is decoupled in the inner product $\langle u, k(\cdot, x) \rangle$

u: natural coordinate, $k(\cdot, x)$: sufficient statistics

• The manifold depends on the choice of k.

e.g. $\Omega = \mathbf{R}$, $\mu = N(0,1)$, $k(x,y) = (xy+1)^2$. $\rightarrow \mathcal{H}_k = \{\text{polyn. deg} \leq 2\}$

 $M_{\mu}(k) = \{N(m, \sigma) \mid m \in \mathbf{R}, \sigma > 0\}$: the normal distributions.¹²

Mean parameter of RKEM

Mean parameter

• For any $f \in M_{\mu}(k)$, there uniquely exists $m_f \in \mathcal{H}_k$ such that $E_f[u(X)] = \langle u, m_f \rangle_{\mathcal{H}_k}$ for all $u \in \mathcal{H}_k$.

 The mean parameter does not necessarily give a coordinate, as in the case of the maximal exponential manifold.

Empirical mean parameter

 $\square X_1, \dots, X_n: i.i.d. \text{ sample } \sim f\mu.$

Empirical mean parameter:

$$\hat{m}_n \coloneqq \frac{1}{n} \sum_{i=1}^n k(\cdot, X_i)$$

Fact 1.
$$\langle \hat{m}_n, f \rangle = \frac{1}{n} \sum_{i=1}^n f(X_i) \quad (\forall f \in \mathcal{H}_k)$$

Fact 2. $\|\hat{m}_n - m_f\|_{\mathcal{H}_k} = O_p(1/\sqrt{n}) \quad (n \to \infty)$

Applications of RKEM

- Maximum likelihood estimation (IGAIA2005)
 - Maximum likelihood estimation with regularization is possible.
 - The consistency of the estimator is proved.
- Statistical asymptotic theory of singular models
 - There are examples of statistical model which is a submodel of an infinite dimensional exponential family, but not embeddable into a finite dimensional exponential family.
 - For a submodel of RKEM, developing asymptotic theory of the maximum likelihood estimator is easy.
- Geometry of RKEM
 - Dual (±1) connections can be introduced on the tangent bundle in some cases.

Statistical asymptotic theory of singular models

Singular Submodel of exponential family

Standard asymptotic theory

Statistical model $\{f(x;\theta) | \theta \in \Theta\}$ on a measure space $(\Omega, \mathcal{B}, \mu)$.

 Θ : (finite dimensional) manifold.

"True" density: $f_0(x) = f(x; \theta_0)$ $(\theta_0 \in \Theta)$ X_1, \dots, X_n : i.i.d. $\sim f_0 \mu$ Maximum likelihood estimator (MLE)

$$\hat{\theta}_n = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \sum_{i=1}^n \log f(X_i; \theta)$$

Asymptotically normal

d-dim smooth manifold

 f_0

MLE

16

Under some regularity conditions,

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \Rightarrow N(0, I(\theta_0)^{-1})$$
 in law $(n \to \infty)$

Likelihood ratio

$$2\ell_n(\hat{\theta}_n) = 2\sum_{i=1}^n \log \frac{f(X_i; \hat{\theta}_n)}{f(X_i; \theta_0)} \implies \chi_d^2$$

in law $(n \to \infty)$

Singular Submodel of exponential family II

Singular submodel in ordinary exponential family Finite dimensional exponential family $M : f(x;\theta) = \exp(\theta^T u(x) - \Psi(\theta))$ Submodel $S = \{f(x;\theta) \in M \mid \theta \in \Theta_S\}$ $(\theta \in \Theta)$

Tangent cone:

$$C_{f_0}S = \{\xi^T u(x) \in T_{f_0}M \mid \exists \{\theta_n\} \subset \Theta_S, \exists \lambda_n > 0 \text{ s.t. } \lambda_n(\theta_n - \theta_0) \to \xi \quad (n \to \infty)\}$$

More explicit formula can be derived in some cases.

Singular submodel in RKEM

- Submodel of an infinite dimensional exponential family
 - There are some models, which are not embeddable into a finite dimensional exponential family, but can be embedded into an infinite dimensional RKEM.

Example:

Mixture of Beta distributions (on [0,1])

$$f(x;\alpha,\beta) = \alpha B(x;\beta,1) + (1-\alpha)B(x;1,1),$$

where $B(x;\beta,\gamma) = \frac{\Gamma(\beta+\gamma)}{\Gamma(\beta)\Gamma(\gamma)} x^{\beta-1} (1-x)^{\gamma-1}$

• Singularity at $f_0(x) = f(x;0,\beta) = B(x;1,1)$ β is not identifiable.

Singular submodel in RKEM II

 $\mathcal{H}_{k} = \text{Sobolev space } H^{1}(0,1) \\ k(x,y) = \exp(-|x-y|), \quad ||u||_{H_{k}}^{2} = \frac{1}{2} \left(u(0)^{2} + u(1)^{2} \right) + \frac{1}{2} \int_{0}^{1} \left(|u'(x)|^{2} + |u(x)|^{2} \right) dx$

Fact: $\log f(x;\alpha,\beta) \in H^1(0,1)$ for $0 \le \alpha < 1$, $\beta > 3/2$.

- Submodel of \mathcal{E}_{f_0} $u_{\alpha,\beta}(x) \coloneqq \log f(x;\alpha,\beta) - E_{f_0}[\log f(x;\alpha,\beta)]$ $S = \{f(\cdot;\alpha,\beta) = \exp(u_{\alpha,\beta} - \Psi_f(u_{\alpha,\beta}))f_0 \mid 0 \le \alpha < 1, \beta > 3/2\}$ \Longrightarrow S is a submodel of \mathcal{E}_{f_0} , and f_0 is a singularity of S.
- Tangent cone at f_0 is not finite dimensional.

$$\frac{\log f(\cdot;\alpha,\beta)}{\alpha} \to w_{\beta} \coloneqq \beta x^{\beta-1} - 1 \quad (\alpha \downarrow 0) \text{ in } H^{1}(0,1)$$

Singular submodel in RKEM III

General theory of singular submodel $M_{\mu}(k)$: RKEM. $f \in M_{\mu}(k)$,

Submodel $S \subset E_f$ defined by $\varphi: K \times [0,1] \rightarrow T_f$ such that

(1) K: compact set

(2)
$$\varphi(a,t) = 0 \iff t = 0$$

(3)
$$\varphi(a,t)$$
: Frechet differentiable w.r.t. *t* and
 $\frac{\partial \varphi}{\partial t}(a,t)$ is continuous on $K \times [0,1]$
(4) $\min_{a \in K} \left\| \frac{\partial \varphi}{\partial t}(a,t) \right\|_{t=0} \right\| > 0$

Singular submodel in RKEM IV

Lemma (tangent cone)

$$C_f S = \mathbf{R}_{\geq} \left\{ \frac{\partial \varphi}{\partial t}(a, t) \big|_{t=0} \ \middle| \ a \in K \right\}$$

<u>Theorem</u>

$$\begin{split} \sup_{g \in S} \sum_{i=1}^{n} \log \frac{g(X_i)}{f(X_i)} &= \frac{1}{2} \sup_{w \in C_f S, E_f |w|^2 = 1} \frac{\langle w, \hat{m}_n \rangle^2}{\text{projection of empirical mean parameter}} \\ & \implies \frac{1}{2} \sup_{w \in C_f S, E_f |w|^2 = 1} G_w^2 \qquad G_w^2: \text{Gaussian process} \end{split}$$

- Analogue to the asymptotic theory on submodel in a finite dimensional exponential family.
- The same assertion holds without assuming exponential family, but the sufficient conditions and the proof are much more involved.

Summary

- Exponential Hilbert manifolds, which can be infinite dimensional, is defined using reproducing kernel Hilbert spaces.
- From the estimation viewpoint, an interesting class is submodels of infinite dimensional exponential manifolds, which are not embeddable into a finite dimensional exponential family.
- The asymptotic behavior of MLE is analyzed for singular submodels of infinite dimensional exponential manifolds.