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Introduction
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Maximal Exponential Manifold

Maximal exponential manifold (P&S‘95)
A Banach manifold is defined so that the cumulant generating 
function is well-defined on a neighborhood of each probability density.

Orlicz space Lcosh-1(f)
This space is (perhaps) the most general to guarantee the finiteness 

of the cumulant generating functions around a point. 
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Estimation with Data

Estimation with a finite sample
A finite dimensional exponential family is suitable for the maximum 
likelihood estimation (MLE) with a finite sample.

MLE:  θ that maximizes 

Is MLE extendable to the maximal exponential manifold?

But, the function value u(Xi) is not a continuous functional on u
in the exponential manifold.

{ }∑ ∑
=

=
Ψ−=

n

i

m

a ia
a

nn Xu
n 1

1
)()(1)X;( θθθl

μ01 :,, fXX n ～i.i.d.K

{ }∑
=

Ψ−=
n

i
finn uXu

n
u

1
)()(1)X;(l

( )nn XX ,,X 1 K=



6

Reproducing kernel exponential 
manifold
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Reproducing Kernel Hilbert Space

Reproducing kernel Hilbert space (RKHS)
Ω: set.  A Hilbert space H consisting of functions on Ω is called a 
reproducing kernel Hilbert space (RKHS) if the evaluation functional

is continuous for each 

A Hilbert space H consisting of functions on Ω is a RKHS if and only 
if there exists                   (reproducing kernel) such that  

(by Riesz’s lemma)
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Reproducing Kernel Hilbert Space II

Positive definite kernel and RKHS
A symmetric kernel  k: Ω x Ω R is said to be positive definite, 
if for any                     and 

Theorem (construction of RKHS)   
If k: Ω x Ω R is positive definite, there uniquely exists a RKHS 
Hk on Ω such that 

(1)                            for all  
(2)  the linear hull of                         is dense in Hk , 
(3)            is a reproducing kernel of Hk, i.e.,
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Reproducing Kernel Hilbert Space III

Some properties
If the pos. def. kernel k is of Cr, so is every function in Hk.
If the pos. def. kernel k is bounded, so is every function in Hk.

Examples: positive definite kernels on Rm

Euclidean inner product

Gaussian RBF kernel

Polynomial kernel
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Exponential Manifold by RKHS

Definitions
Ω: topological space.    μ: Borel probability measure on Ω s.t. suppμ = Ω.  
k : continuous pos. def. kernel on Ω such that Hk contains 1 (constants). 

Note: If || u || < δ,    

Tangent space

{ ∫ =Ω∈∀>→Ω= ,1),(0)( ,:::)( μμ fdxxff|fkM continuousR
}∞<>∃ ∫ )()(,0 ),( xdxfe xxk μδ δ

{ }0)]([|: =∈= XuEuT fkf H closed subspace of Hk

Mμ(k) is provided with a Hilbert manifold structure. 
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Exponential Manifold by RKHS  II

Local coordinate
For 

Then, for any 

Define 

Lemma
(1)  Wf is an open subset of Tf.  
(2)  
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Reproducing Kernel Exponential Manifold (RKEM)
Theorem

Exponential Manifold by RKHS  III

.      The system                           is a      -atlas of Mμ(k).

A structure of Hilbert manifold is defined on Mμ(k) with Riemannian 
metric Ef[uv].
Likelihood functional is continuous. 
The function u(x) is decoupled in the inner product 

u: natural coordinate,                : sufficient statistics
The manifold depends on the choice of k. 
e.g. Ω = R,  μ = N(0,1),  k(x,y) = (xy+1)2.      Hk = {polyn. deg ≦ 2} 

Mμ(k) =  {N(m, σ) | m ∈ R,  σ > 0 }  : the normal distributions. 
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Mean parameter
For any                   there uniquely exists                such that 

The mean parameter does not necessarily give a coordinate, as in
the case of the maximal exponential manifold.

Empirical mean parameter
X1, …, Xn: i.i.d. sample ~ fμ. 
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Applications of RKEM

Maximum likelihood estimation (IGAIA2005)
Maximum likelihood estimation with regularization is possible.
The consistency of the estimator is proved.

Statistical asymptotic theory of singular models
There are examples of statistical model which is a submodel 
of an infinite dimensional exponential family, but not 
embeddable into a finite dimensional exponential family. 
For a submodel of RKEM, developing asymptotic theory of the 
maximum likelihood estimator is easy. 

Geometry of RKEM
Dual         connections can be introduced on the tangent 
bundle in some cases.  
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Statistical asymptotic theory of 
singular models
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Standard asymptotic theory
Statistical model                          on a measure space (Ω,B,μ).
Θ: (finite dimensional) manifold.
“True” density:  f0(x) = f(x ;θ0)
Maximum likelihood estimator (MLE)

Under some regularity conditions,

Likelihood ratio 

Singular Submodel of exponential family
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Singular Submodel of exponential family II

Singular submodel in ordinary exponential family
Finite dimensional exponential family M :
Submodel 

Tangent cone:

Under some regularity conditions,
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More explicit formula can be derived in some cases.

projection of empirical 
mean parameter
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Singular submodel in RKEM

Submodel of an infinite dimensional exponential 
family

There are some models, which are not embeddable into a finite 
dimensional exponential family, but can be embedded into an infinite 
dimensional RKEM. 

Example:
Mixture of Beta distributions (on [0,1])

Singularity at 
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Singular submodel in RKEM  II

Hk =  Sobolev space H1(0,1)

Submodel of Ef0

Tangent cone at f0 is not finite dimensional.
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General theory of singular submodel
Mμ(k): RKEM.

Submodel                defined by  
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Singular submodel in RKEM  III
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Singular submodel in RKEM  IV
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Lemma (tangent cone) 
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• Analogue to the asymptotic theory on submodel in a finite
dimensional exponential family.

• The same assertion holds without assuming exponential family, 
but the sufficient conditions and the proof are much more involved. 

projection of empirical mean parameter
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Summary

Exponential Hilbert manifolds, which can be infinite dimensional, is 
defined using reproducing kernel Hilbert spaces.  

From the estimation viewpoint, an interesting class is submodels of 
infinite dimensional exponential manifolds, which are not 
embeddable into a finite dimensional exponential family. 

The asymptotic behavior of MLE is analyzed for singular submodels
of infinite dimensional exponential manifolds.   
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