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Introduction



Maximal Exponential Manifold

Maximal exponential manifold (P&S*'95)

o A Banach manifold is defined so that the cumulant generating
function is well-defined on a neighborhood of each probability density.

f, =exp(u—-¥; (u))f, ¥, (u)=logE;[e"] <o

o Orlicz space L, (f) = {u |3a >0s.t.E;[e"]<x and E .[e"™]< oo}

This space is (perhaps) the most general to guarantee the finiteness
of the cumulant generating functions around a point.



Estimation with Data

Estimation with a finite sample
o A finite dimensional exponential family is suitable for the maximum
likelihood estimation (MLE) with a finite sample.
Xppoon X, oiid, ~ fou X, =(Xg,..., X,)

MLE: @ that maximizes
1 moq
fn(ﬁixn)=ﬁZ{Za19 ua(xi)—\y(a)}
i=1

o Is MLE extendable to the maximal exponential manifold?

n

LX) =23 j(X) - ¥, W)

i=1
=> But, the function value u(X;) is not a continuous functional on u
In the exponential manifold.



Reproducing kernel exponential
manifold



Reproducing Kernel Hilbert Space

Reproducing kernel Hilbert space (RKHS)

o Q: set. A Hilbert space # consisting of functions on Q is called a
reproducing kernel Hilbert space (RKHS) if the evaluation functional

e H >R, frs (X

is continuous for each X €Q.

o A Hilbert space # consisting of functions on Q is a RKHS if and only
if there exists k(-,x) e # (reproducing kernel) such that
<k(~,x),f>}[:f(x) Vi e, xeQ.

(by Riesz’s lemma)



Reproducing Kernel Hilbert Space 11

Positive definite kernel and RKHS

A symmetric kernel k: Q x Q - R Is said to be positive definite,
if for any X;,...,X, €Q andc...,c, R,

> i1GCK (X, X;) 20,

Theorem (construction of RKHS)

If k: Q x Q 2> R Is positive definite, there uniquely exists a RKHS
H, on Q such that

(1) k(,x)eH for all x e €2,
(2) the linear hull of {k(-,x)|x e Q} is dense in 7, ,
(3) k(-,X) is a reproducing kernel of #, i.e.,

KEo B, =0 Vfear,, xeQ




Reproducing Kernel Hilbert Space 111

Some properties
o If the pos. def. kernel k is of C, so is every function in #,.
o If the pos. def. kernel k is bounded, so is every function in #,.

Examples: positive definite kernels on R™
Euclidean inner product

k(x,y)=x'y H,=R"
Gaussian RBF kernel
(xy) =expl-lx-yf/o?]  dimag= oo

Polynomial kernel
k(x,y)=(x"y+c)® (c=0,deN) #H ={polyn. deg =d}



Exponential Manifold by RKHS

Definitions

Q: topological space. w: Borel probability measure on Q s.t. suppu = Q.
k : continuous pos. def. kernel on Q such that #, contains 1 (constants).

M , (k) ={f:Q— R| f :continuous, f(x)>0(VxeQ), j fdu =1,
35>0, [eK0 £ (x)dp(x) < o|

M (k) is provided with a Hilbert manifold structure.
Note: If [ u || < & E, [eu(X)] = E, [e<u,k(.,X)>] <E, [eIIUII«/k(X,X)] < o0

o Tangent space
T, ={ue, | E[u(X)]=0f closed subspace of 7

10



Exponential Manifold by RKHS 11

Local coordinate
For feM,(k), W, ={ueT,|35>0, E,[e*® X0} T,

Then, forany ueW,
f,=explu-¥,u)f eM, (k).

Define
S Wy > M (k), U f, (one-to-one) E; =& (W;)

9. :S; >W,, @, =& > works as a local coordinate

Lemma

(1) W;is an open subset of T..
(2) 9€E; < Ey =£g.

11
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Reproducing Kernel Exponential Manifold (RKEM)

Theorem.  The system {(Ef Nor )} Isa C*-atlas of M (k).

feM, (k)

exp(u— ¥, (W) T _ Eg{log exp(u—;l’f (u»f}

coordinate ¢, ¢, (u)=log
transform

:u+logi—Eg{u+logi}
g g

o A structure of Hilbert manifold is defined on M (k) with Riemannian
metric EJuv].

o Likelihood functional is continuous.
o The function u(x) is decoupled in the inner product (u,k(,x))
u: natural coordinate, K(-,Xx) : sufficient statistics
o The manifold depends on the choice of k.
e.g. Q=R, £=N(0,1), k(x,y)=(xy+1)2. > # ={polyn. deg = 2}
M, K)= {N(m, o) |m €R, >0} :the normal distributions. 12



Mean parameter of RKEM

Mean parameter
o Forany f eM  (k), there uniquely exists m; e #, such that

E,u)1={um, ), forall ued,.

o The mean parameter does not necessarily give a coordinate, as in
the case of the maximal exponential manifold.

Empirical mean parameter
o Xg .., X0 Lild. sample ~ fu

. 10
Empirical mean parameter:. M, .= sz( Xi)
i1

Factl.  (,, f>=%i F(X) (Ve

Fact 2. rﬁn—meﬂk =0,(l\n) (o)

13



Applications of RKEM

o Maximum likelihood estimation (IGAIA2005)
Maximum likelihood estimation with regularization is possible.
The consistency of the estimator is proved.

o Statistical asymptotic theory of singular models

There are examples of statistical model which is a submodel
of an infinite dimensional exponential family, but not
embeddable into a finite dimensional exponential family.

For a submodel of RKEM, developing asymptotic theory of the
maximum likelihood estimator is easy.

o Geometry of RKEM

Dual (1) connections can be introduced on the tangent
bundle in some cases.

14



Statistical asymptotic theory of
singular models

15



Singular Submodel of exponential family

Standard asymptotic theory
Statistical model {f (x;0) |6 € ®} on a measure space (2,3, u).
O®: (finite dimensional) manifold.
“True” density: f,(x) =f(x;6,) (6, <0) X X0 hide ~ fou
Maximum likelihood estimator (MLE)
6. =arg maxilog f(X,:0)

(S0 i=1 ]
Asymptotically normal

Under some regularity conditions,
Vn(@,-6,) = N(©,1(6,)™") inlaw (n—> )

Likelihood ratio R
L f (XI 1€n) 2

20 (6.)=2%"lo
n( n) é gf(Xl,eo) :>Zd

d-dim

inlaw (n— )



Singular Submodel of exponential family II

Singular submodel in ordinary exponential family
Finite dimensional exponential family M : f (x;8) = exp(6'u(x) — ¥ (8))
Submodel S={f(x;0)eM |0 <O} (0 €0)

Tangent cone:
Ci,S ={&"u(x) eT M[|HO,} = 04,34, >0st.4,(6,-6) ><S (n—>x0)}

C,.S

Under some regularity conditions,
f(X;:6,)
F(Xi:6)
1 , 2
= sup {fT (%Zizlu(xi))} +0,(1)

T T2 - - P
S U<Ci® Enle =L hrojection of empirical (N — o)
mean parameter

£,(6,)=>log
i=1

More explicit formula can be derived in some cases. 17



Singular submodel in RKEM

Submodel of an infinite dimensional exponential
family

a There are some models, which are not embeddable into a finite
dimensional exponential family, but can be embedded into an infinite
dimensional RKEM.

Example: 3
Mixture of Beta distributions (on [0,1]) 25l
| B(x;3,1 |
f(ca.f)=aBOcp+U-aBOLD,
where B(X; 8,7) = firy X7 (1=x)"" OlB(x;l,}/ |
o Singularity at f,(x) = f(x;0, ) = B(x;1,1) % .

£1s not identifiable. "



Singular submodel in RKEM 11

o H,= Sobolev space H(0,1)
k(x,y) = exp(-x-yD), 1l =2 (0O +u@?)+ [(weaF +1uto P x

Fact: log f(x;a,)eH'(0,1) for 0<a<l, B>3/2.

o Submodel of &,
u, ;(X):=log f (x;e, B) - E¢ [log f (X, ¢, )]

S={f(a, B)=exp(u, ,—¥;(u, ;) f, |0<a <l p>3/2}

@) Sis a submodel of &, and f, is a singularity of S.

o Tangent cone at f; is not finite dimensional.

log f (@, 8) w, = px"* -1 (ad0) in H(0Q)
(04

19
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General theory of singular submodel
M,(K): RKEM. feM,(k),
Submodel S cE; defined by ¢:Kx[01]—>T,

such that

(1) K:compact set
(2) ¢(a,t)=0 & t=0
(3) ¢f(a,t): Frechet differentiable w.r.t. t and

Singularity F

20

%_(t”(a,t) is continuous on K x[0,1]

(4) lenH%” @at),_ >0




Singular submodel in RKEM 1V

aeK}
9(X;)

1 o\ 2
sup> log=~—2 == su w, M, o (1 s o
ges ; f(X ) 2WeC S, Ep|w| —1< > p( ) ( )

Lemma (tangent cone)

op
cis-r [P,

Theorem

projection of empirical mean parameter

1 2 .
= — sup G, G,: Gaussian process
in law 2 weC, S, E, |w?=1

« Analogue to the asymptotic theory on submodel in a finite
dimensional exponential family.

 The same assertion holds without assuming exponential family,
but the sufficient conditions and the proof are much more involv%d.



Summary

o Exponential Hilbert manifolds, which can be infinite dimensional, is
defined using reproducing kernel Hilbert spaces.

o From the estimation viewpoint, an interesting class is submodels of
Infinite dimensional exponential manifolds, which are not
embeddable into a finite dimensional exponential family.

o The asymptotic behavior of MLE is analyzed for singular submodels
of infinite dimensional exponential manifolds.

22
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