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Introduction

B “Kernel methods” for statistical inference

— Kernelization: mapping data into a functional space (RKHS) and
apply linear methods on RKHS.

— Transform the random variable X to ®(X) =k(-, X).

Linear statistics on RKHS (variance, conditional covariance) can
characterize independence and conditional independence
through higher-order moments.

— With which kernels is this possible?

. N D (X)=k(,X)
2 AN

)
Q (original space) s | H (RKHS)
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Mean Element on RKHS

B Mean element on RKHS

X: random variable taking value on Q.
k: positive definite kernel on Q. H: RKHS associated with k.
d(X)=k(-,X): random variable on RKHS.

— There uniquely exists the mean element My e H of Xon H s.t.
(my, f)=E[f(X)] (Vf eH)
(by Riesz’s lemma)
— Fact: m, (u) = E[k(u, X)]
~) my (u) =(my,k(-,u)) = E[k(X,u)].

— m, contains the information on the moments E[f(X)] for all f.

If H is large enough, m, may have sufficient information to
determine the law of X



Determining Class

B Means determine a probabillity

Proposition
(Q2,8): measurable space. P, Q: probabilities on (Q,3).
¥ Ex-p[ f (X)]=Ex_o[f(X)]

for every measurable function f, then, P =Q.

Proposition (e.q. [Dudley 9.3.1])
P, Q: Borel probabilities on a metric space.

1 Ey-p[f(X)]=Ey o[ f(X)]

for every continuous and bounded function f, then, P =0Q.

— The function class C,(Q) is a determining class of probabilities
on a metric space.



Characteristic Kernels

B \When does a RKHS work as a determining class?

®: family of all the probabilities on a measurable space (Q2, B).

H: RKHS on Q with measurable kernel k.
m,: mean element on H for a probability P e @ i1.e. m,(u) = E,[k(X,u)]

— Definition: the kernel k is called characteristic if the mapping

P —H, P mg
IS one-to-one.

— The mean element for a characteristic kernel uniguely determines a

probability.
my(U)=my(u) (VueQ) < P=Q

— Analogous to the characteristic function of a random vector
Chf., (u) = E[exp’ "], ;



B Advantages of pos. def. kernel approach
— Empirical estimation is easy!
X® XN sample > ®(X,),...,®(X,) : sample on RKHS

N N
Empirical mean (" =%Z<D(Xi) =%Zk(-, X;)
i=1 i=1

<m;“>,f>=%%f(xi) =E[f (X)] (Vf eHy)

— Application: 2-sample homogeneity test by MMD (Gretton et al. 2007)
& a |2
MMD;, = [fy —mhy [,

emp

zlzNzxjk(xi,xj)— 2 %%k(xi’Ya)_l_lz%k(Ya’Yb)

x 1,j=1 x Ny i=la=l y a,b=l

Statistical properties can be also derived.



Characterization of Independence

— Definition: cross-covariance operator
X, Y : general random variables on & and Y, resp.
Prepare RKHS (Hy, kq) and (Hy,, k) defined on & and Y, resp.
Define an operator %,, :H, —> H,

(9,2 f)=E[g(Y) f (X)I-E[g(YV)IELT (X)] (=Cov[f(X),g(Y)])
forall feHg geH,

— Independence and Cross-covariance operator
Theorem
If the product kernel kek,, is characteristic, then

Xand Y are independent < X, , =0

o c.f. for Gaussian variables,
X1lY < V=0 ie. uncorrelated o



Characterization of Conditional

Independence

X, Y, Z : random variables on &, Y, Z (resp.).
(Hg, Ke)s (Hyy Kep), (Hgz, K7) - RKHS defined on &, Y, Z (resp.).

— Conditional cross-covariance operator

1
Zyxz =2yx —2yzlzz 2z Hx = Hy

Theorem (FBJ04, FBJO06, Sun et al 07)
Define the augmented variable X =(X,z) and define a kernel
on xZ by k;(:k}(kZ

Assume k:k, and k, are characteristic, then,

c.f. for Gaussian variables,

V., —=V.,,V,,V,, =0 < X1UY|Z
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When Is a kernel characteristic?

B Shift-invariant kernels on R™

Bochner’s theorem
#(X): bounded continuous function on R™,

A shift-invariant kernel k(x, y) = ¢(x - y) is positive definite
If and only if there is a non-negative finite Borel measure A
such that

p(x) = [ dA(w)  (xeG).

— If Ais given by A(o)de (A(w)=0)
AU0) = () (Fourier transform of ¢).

— Shift-invariant characteristic kernel on R™
[k(x=y)p(y)dx=[k(x-y)a(y)dx = p=g
or $(P-G)=0 = p=q 12



— Observation: if #(w)=0 on an interval of some frequency, then k
must not be characteristic.

~

E.g. ¢(X):sin(ax) 5(@):\@'[_%](0)) (o)

If (p - )" differ only out of [-«, «],

p and g are not distinguishable.

— Conjecture: if d(w) > 0 for all o, then K(X, Y) = ¢(X - y) is characteristic.
E.g. Gaussian kernel

po=e"2"  fw)=e "

— Is B,,.;-spline kernel characteristic?

¢2n+1(x) — I[_% 1] xeo® I[_% 1]

; a)2n+2

&Znﬂ(a)) :(Zj Sin™_(/2)
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Locally Compact Abelian Group

— A Locally compact Abelian group (LCA group)

IS a locally compact topological space with commutative group
structure (x +y =y + x) such the group operations (X, y) — X+ Yy
and X —X are continuous.

— Examples
* R" with usual addition.
e S! (unit circle) with addition modulo 2.
e Torus: Stx ...x St

— Haar measure: shift-invariant measure.

There Is a unique (up to scale) Radon measure*
u=dxonG s.t.

U(E+Xx)=u(E) (Vx € G,VE : Borel set)

* A Radon measure is a Borel measure s.t. (i) #(K) < for all compact set K,

(i) u(E) =sup{u(K)|K < E, K : compact}=inf{u(K) | E =U,U : open} 1



Fourier Analysis on LCA Group

— Character of LCA group
p .G — C : character of a LCA group G

éﬁ | P(X) =L p(x+Yy) = p(X)p(Y) (VX,y eG)

— Dual group: G” = all the continuous characters on G.
The group operation is given by (o7)(X) = p(X)7(X).
Examples

- (R4): G ={e¢ji“’TX | R"} (Fourier kernels)
—1n

- (St+): G ={e * ' IneZ} (Fourier kernels)

Fact: G” is also a LCA group if the weakest topology so that
p = p(X) is continuous for every x e G is introduced.

Fact: G~ =G. (Pontryagin duality)
15



— On LCA group, Fourier analysis is possible by using the continuous
characters as Fourier kernel.

« Fourier transform of f € L'(G,dx)
f(p) =, f(x)p(x)dx (function on G")

Fourier transform of a measure #€ M (G).*

a(p) = J, p(X)du(¥)

Convolution
f*g=]f(x—y)g(y)dy=[g(x—y)f(y)dy

p*g=[f(x-y)du(y)

Fourier transform of convolution:
(u*g) =44
Fourier inversion is also possible. F(X) = _[G*,O(X)F(,O)dp (xeG).

1 M(G) denotes the set of all bounded complex-valued Radon measures.



Bochner's Theorem

B Shift-invariant kernel on LCA group
G: LCA group
Shift-invariant positive definite kernel:  k(x, y) = ¢(X - y)

Bochner’s theorem
#(X): bounded continuous function on a LCA group G.

The kernel k(x, y) = ¢(x - y) is positive definite if and only if there
is a non-negative measure A e M(G") such that

#(X) = |- p(X)dA(p)  (x€G).

The non-negative measure A€M (G’) is unique.

G < > G*
¢ (p,X) A 17



Shift-invariant Characteristic Kernels

— Support of a measure u
supp(u) ={xeG|uU) =0 forallopensetU s.t. xeU}

(xeG),

k is characteristic if and only if supp(A) = G*.

Theorem (Sriperumbudur et al, COLT2008, Fukumizu et al. 2008)

G: LCA group
K(x,y) = ¢(x - y) . shift-invariant positive definite kernel on G s.t.

$(x) = [ . p()dA(p)

where A is a non-negative finite Borel measure on G*.

(shift-invariant p.d. kernel )

characteristic
kernel

{ shift-invariant
\_

|

<

Fourier

transform

N
7

(non-negative measure )

measure with

[Ton-negative
-

supp = G*

|
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— Examples
» Gaussian RBF kernels and Laplacican kernels are characteristic.

~ 2 2
P(X) = e_XZ/zgz Hw)=e"" f support = R
B(X) = e N b(0) = 2a support = R
(o’ +X%)
* B,..;-spline kernel is characteristic.
~ 2 n+1 Sin2n+2 y)
Ponia (@) = (ﬂj Zn(g)/ ) support=R

19



Summary

B Kernel methods for statistical inference

— Transforming random variables into the feature space (RKHS).

— Simple linear statistics on RKHS have rich information on the
original variable.

— To maintain all the information on the variables, use characteristic
kernels.

B Shift-invariant characteristic kernels

— Shift invariant characteristic kernels on a locally compact Abelian
group can be determined completely by their Fourier transforms.

20
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