Independence, Conditional Independence, and Characteristic Kernels

Kenji Fukumizu

Institute of Statistical Mathematics, ROIS

Graduate University for Advanced Studies

Based on joint work with Bharath Sriperumbudur, Arthur Gretton, Gert Lanckriet, and Bernhard Schölkopf

GIF Workshop @ Tübingen May 15-16, 2008

Outline

- 1. Introduction
- 2. Characteristic kernels for determining probabilities
- 3. Shift-invariant characteristic kernels on locally compact Abelian groups
- 4. Summary

Introduction

"Kernel methods" for statistical inference

- Kernelization: mapping *data* into a functional space (RKHS) and apply linear methods on RKHS.
- Transform the *random variable* X to $\Phi(X) = k(\cdot, X)$.
 - Linear statistics on RKHS (variance, conditional covariance) can characterize independence and conditional independence through higher-order moments.
- With which kernels is this possible?

Outline

- 1. Introduction
- 2. Characteristic kernels for determining probabilities
- 3. Shift-invariant characteristic kernels on locally compact Abelian groups
- 4. Summary

Mean Element on RKHS

Mean element on RKHS

X: random variable taking value on Ω .

- *k*: positive definite kernel on Ω . *H*: RKHS associated with *k*. $\Phi(X) = k(\cdot, X)$: random variable on RKHS.
- There uniquely exists the mean element $m_X \in H$ of X on H s.t.

$$\langle m_X, f \rangle = E[f(X)]$$
 ($\forall f \in H$)
(by Riesz's lemma)

- Fact: $m_X(u) = E[k(u, X)]$

$$\therefore) \quad m_X(u) = \langle m_X, k(\cdot, u) \rangle = E[k(X, u)].$$

m_X contains the information on the moments *E*[*f*(*X*)] for all *f*.
If *H* is large enough, *m_X* may have sufficient information to determine the law of *X*

Determining Class

Means determine a probability

Proposition

 $\begin{array}{ll} (\Omega, \mathcal{B}) \text{: measurable space.} & P, Q \text{: probabilities on } (\Omega, \mathcal{B}) \text{.} \\ \\ \text{If} & E_{X \sim P}[f(X)] = E_{X \sim Q}[f(X)] \end{array}$

for every measurable function *f*, then, P = Q.

Proposition (e.g. [Dudley 9.3.1])P, Q: Borel probabilities on a metric space.If $E_{X\sim P}[f(X)] = E_{X\sim Q}[f(X)]$

for every continuous and bounded function *f*, then, P = Q.

- The function class $C_b(\Omega)$ is a determining class of probabilities on a metric space.

Characteristic Kernels

When does a RKHS work as a determining class?

- \mathcal{P} : family of all the probabilities on a measurable space (Ω , \mathcal{B}).
- *H*: RKHS on Ω with measurable kernel *k*.
- m_P : mean element on H for a probability $P \in \mathcal{P}$ *i.e.* $m_P(u) = E_P[k(X, u)]$
- Definition: the kernel k is called characteristic if the mapping

$$\mathcal{P} \to H, \qquad P \mapsto m_P$$
 one-to-one.

is

The mean element for a characteristic kernel uniquely determines a probability.

$$m_P(u) = m_Q(u) \quad (\forall u \in \Omega) \quad \Leftrightarrow \quad P = Q$$

- Analogous to the characteristic function of a random vector $\operatorname{Ch.f.}_{X}(u) = E[\exp^{\sqrt{-1}X^{T}u}].$

Advantages of pos. def. kernel approach

- Empirical estimation is easy! $X^{(1)},...,X^{(N)}$: sample $\rightarrow \Phi(X_1),...,\Phi(X_N)$: sample on RKHS

Empirical mean
$$\hat{m}_X^{(N)} = \frac{1}{N} \sum_{i=1}^N \Phi(X_i) = \frac{1}{N} \sum_{i=1}^N k(\cdot, X_i)$$

 $\left\langle \hat{m}_X^{(N)}, f \right\rangle = \frac{1}{N} \sum_{i=1}^N f(X_i) \equiv \hat{E}[f(X)] \qquad (\forall f \in H_X)$

Application: 2-sample homogeneity test by MMD (Gretton et al. 2007)

$$MMD_{emp}^{2} = \left\| \hat{m}_{X} - \hat{m}_{Y} \right\|_{H}^{2}$$

= $\frac{1}{N_{X}^{2}} \sum_{i,j=1}^{N_{X}} k(X_{i}, X_{j}) - \frac{2}{N_{X}N_{Y}} \sum_{i=1}^{N_{X}} \sum_{a=1}^{N_{Y}} k(X_{i}, Y_{a}) + \frac{1}{N_{Y}^{2}} \sum_{a,b=1}^{N_{Y}} k(Y_{a}, Y_{b})$

Statistical properties can be also derived.

Characterization of Independence

- Definition: cross-covariance operator

X, *Y*: general random variables on \mathcal{X} and \mathcal{Y} , resp. Prepare RKHS ($H_{\mathcal{X}}$, $k_{\mathcal{X}}$) and ($H_{\mathcal{Y}}$, $k_{\mathcal{Y}}$) defined on \mathcal{X} and \mathcal{Y} , resp. Define an operator Σ_{YX} : $H_X \to H_Y$

 $\langle g, \Sigma_{YX} f \rangle = E[g(Y)f(X)] - E[g(Y)]E[f(X)] \ (= \operatorname{Cov}[f(X), g(Y)])$ for all $f \in H_{\mathfrak{X}}, g \in H_{\mathfrak{Y}}$

- Independence and Cross-covariance operator

<u>Theorem</u>

If the product kernel $k_x k_u$ is characteristic, then

X and Y are independent $\Leftrightarrow \Sigma_{XY} = O$

• c.f. for Gaussian variables,

 $X \coprod Y \iff V_{XY} = O$ *i.e.* uncorrelated

Characterization of Conditional Independence

X, Y, Z : random variables on \mathcal{X} , \mathcal{Y} , \mathcal{Z} (resp.). ($H_{\mathcal{X}}$, $k_{\mathcal{X}}$), ($H_{\mathcal{Y}}$, $k_{\mathcal{Y}}$), ($H_{\mathcal{Z}}$, $k_{\mathcal{Z}}$) : RKHS defined on \mathcal{X} , \mathcal{Y} , \mathcal{Z} (resp.).

- Conditional cross-covariance operator

$$\Sigma_{YX|Z} \equiv \Sigma_{YX} - \Sigma_{YZ} \Sigma_{ZZ}^{-1} \Sigma_{ZX} \qquad H_X \to H_Y$$

Theorem (FBJ04, FBJ06, Sun et al 07)Define the augmented variable $\tilde{X} = (X,Z)$ and define a kernelon $\mathcal{X} \times \mathcal{Z}$ by $k_{\tilde{\chi}} = k_{\chi} k_{Z}$ Assume $k_{\tilde{\chi}} k_{\gamma}$ and k_{z} are characteristic, then, $\Sigma_{\chi \tilde{\chi} | Z} = O$ \Leftrightarrow $X \perp Y | Z$

c.f. for Gaussian variables,

$$V_{YY} - V_{YZ} V_{ZZ}^{-1} V_{ZX} = O \qquad \Leftrightarrow \qquad X \coprod Y \mid Z$$

Outline

- 1. Introduction
- 2. Characteristic kernels for determining probabilities
- 3. Shift-invariant characteristic kernels on locally compact Abelian groups
- 4. Summary

When is a kernel characteristic?

Shift-invariant kernels on R^m

Bochner's theorem

 $\phi(x)$: bounded continuous function on \mathbf{R}^m .

A shift-invariant kernel $k(x, y) = \phi(x - y)$ is positive definite if and only if there is a non-negative finite Borel measure Λ such that

$$\phi(x) = \int e^{\sqrt{-1}\omega^T x} d\Lambda(\omega) \qquad (x \in G).$$

- If Λ is given by $\lambda(\omega)d\omega$ ($\lambda(\omega) \ge 0$)

 $\lambda(\omega) = \hat{\phi}(\omega)$ (Fourier transform of ϕ).

– Shift-invariant characteristic kernel on \mathbf{R}^m

$$\int k(x-y)p(y)dx = \int k(x-y)q(y)dx \implies p = q$$

or $\hat{\phi}(\hat{p}-\hat{q}) = 0 \implies p = q$ 12

- Observation: if $\hat{\phi}(\omega) = 0$ on an interval of some frequency, then k must not be characteristic.

E.g.
$$\phi(x) = \frac{\sin(\alpha x)}{x}$$
 $\hat{\phi}(\omega) = \sqrt{\frac{\pi}{2}} I_{[-\alpha \alpha]}(\omega)$

If $(p - q)^{\wedge}$ differ only out of $[-\alpha, \alpha]$, *p* and *q* are not distinguishable.

- Conjecture: if $\hat{\phi}(\omega) > 0$ for all ω , then $k(x, y) = \phi(x - y)$ is characteristic. E.g. Gaussian kernel

$$\phi(x) = e^{-x^2/2\sigma^2} \qquad \hat{\phi}(\omega) = e^{-\sigma^2 \omega^2/2}$$

- Is B_{2n+1}-spline kernel characteristic?

$$\phi_{2n+1}(x) = I_{\left[-\frac{1}{2} \frac{1}{2}\right]} * \dots * I_{\left[-\frac{1}{2} \frac{1}{2}\right]}$$

$$\hat{\phi}_{2n+1}(\omega) = \left(\frac{2}{\pi}\right)^{n+1} \frac{\sin^{2n+2}(\omega/2)}{\omega^{2n+2}}$$

Locally Compact Abelian Group

- A Locally compact Abelian group (LCA group)
 - is a locally compact topological space with commutative group structure (x + y = y + x) such the group operations $(x, y) \mapsto x + y$ and $x \mapsto -x$ are continuous.
- Examples
 - **R**^{*n*} with usual addition.
 - S^1 (unit circle) with addition modulo 2π .
 - Torus: **S**¹ x ...x **S**¹
- Haar measure: shift-invariant measure.

There is a unique (up to scale) Radon measure* $\mu = dx$ on G s.t. $\mu(E+x) = \mu(E)$ ($\forall x \in G, \forall E$: Borel set)

* A Radon measure is a Borel measure s.t. (i) $\mu(K) < \infty$ for all compact set *K*, (ii) $\mu(E) = \sup\{\mu(K) \mid K \subset E, K : \text{compact}\} = \inf\{\mu(K) \mid E \subset U, U : \text{open}\}$

Fourier Analysis on LCA Group

- Character of LCA group
 - $\rho: G \to \mathbb{C}$: character of a LCA group G

$$\Leftrightarrow_{\text{def.}} |\rho(x)|=1, \quad \rho(x+y)=\rho(x)\rho(y) \qquad (\forall x, y \in G)$$

- Dual group: G^* = all the continuous characters on G. The group operation is given by $(\rho \tau)(x) \coloneqq \rho(x) \tau(x)$. Examples

- (
$$\mathbf{R}^{n}$$
,+): $G^{*} = \{e^{\sqrt{-1}\omega^{T_{x}}} | \omega \in \mathbf{R}^{n}\}$ (Fourier kernels)
- (\mathbf{S}^{1} ,+): $G^{*} = \{e^{\frac{\sqrt{-1}n}{2\pi}x} | n \in \mathbf{Z}\}$ (Fourier kernels)

Fact: G^* is also a LCA group if the weakest topology so that $\rho \mapsto \rho(x)$ is continuous for every $x \in G$ is introduced.

Fact: $G^{**} \cong G$. (Pontryagin duality)

- On LCA group, Fourier analysis is possible by using the continuous characters as Fourier kernel.
 - Fourier transform of $f \in L^1(G, dx)$

$$\hat{f}(\rho) = \int_{G} f(x) \overline{\rho(x)} dx$$
 (function on G^*)

• Fourier transform of a measure $\mu \in M(G)$.¹

 $\hat{\mu}(\rho) = \int_{G} \overline{\rho(x)} d\mu(x)$

Convolution

$$f * g = \int f(x - y)g(y)dy = \int g(x - y)f(y)dy$$
$$\mu * g = \int f(x - y)d\mu(y)$$

• Fourier transform of convolution:

$$(\mu * g)^{\wedge} = \hat{\mu} \, \hat{g}$$

• Fourier inversion is also possible. $\breve{F}(x) = \int_{G^*} \rho(x) F(\rho) d\rho$ $(x \in G)$.

16

1 M(G) denotes the set of all bounded complex-valued Radon measures.

Bochner's Theorem

Shift-invariant kernel on LCA group

G: LCA group

Shift-invariant positive definite kernel: $k(x, y) = \phi(x - y)$

Bochner's theorem

 $\phi(x)$: bounded continuous function on a LCA group *G*. The kernel $k(x, y) = \phi(x - y)$ is positive definite if and only if there is a non-negative measure $\Lambda \in M(G^*)$ such that

$$\phi(x) = \int_{G^*} \rho(x) d\Lambda(\rho) \qquad (x \in G).$$

The non-negative measure $\Lambda \in M(G^*)$ is unique.

$$\begin{array}{ccc} G & \longleftrightarrow & G^* \\ \phi & (\rho, x) & \Lambda \end{array}$$

Shift-invariant Characteristic Kernels

- Support of a measure μ

 $\operatorname{supp}(\mu) = \{ x \in G \mid \mu(U) \neq 0 \text{ for all open set } U \text{ s.t. } x \in U \}$

Theorem (Sriperumbudur et al, COLT2008, Fukumizu et al. 2008)

G: LCA group $k(x, y) = \phi(x - y)$: shift-invariant positive definite kernel on *G* s.t. $\phi(x) = \int_{C^*} \rho(x) d\Lambda(\rho) \qquad (x \in G),$

where Λ is a non-negative finite Borel measure on G^* .

k is characteristic if and only if $supp(\Lambda) = G^*$.

– Examples

• Gaussian RBF kernels and Laplacican kernels are characteristic.

$$\phi(x) = e^{-x^2/2\sigma^2} \qquad \hat{\phi}(\omega) = e^{-\sigma^2 \omega^2/2} \qquad \text{support} = \mathbf{R}$$
$$\phi(x) = e^{-\alpha|x|} \qquad \hat{\phi}(\omega) = \frac{2\alpha}{\pi(\alpha^2 + x^2)} \qquad \text{support} = \mathbf{R}$$

• B_{2n+1}-spline kernel is characteristic.

$$\hat{\phi}_{2n+1}(\omega) = \left(\frac{2}{\pi}\right)^{n+1} \frac{\sin^{2n+2}(\omega/2)}{\omega^{2n+2}}$$
 support = **R**

Summary

Kernel methods for statistical inference

- Transforming random variables into the feature space (RKHS).
- Simple linear statistics on RKHS have rich information on the original variable.
- To maintain all the information on the variables, use characteristic kernels.

Shift-invariant characteristic kernels

 Shift invariant characteristic kernels on a locally compact Abelian group can be determined completely by their Fourier transforms.