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Introduction
“Kernel methods” for statistical inference
– Kernelization:  mapping data into a functional space (RKHS) and 

apply linear methods on RKHS.

– Transform the random variable X to
Linear statistics on RKHS (variance, conditional covariance) can 

characterize independence and conditional independence 
through higher-order moments. 

– With which kernels is this possible?

Ω (original space)
Φ 

H (RKHS)

X
Φ (X) = k(  , X)

).,()( XkX ⋅=Φ
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Mean Element on RKHS
Mean element on RKHS
X: random variable taking value on Ω.
k: positive definite kernel on Ω.        H: RKHS associated with k.

: random variable on RKHS.

– There uniquely exists the mean element of X on H s.t.

– Fact:

– mX contains the information on the moments  E[f(X)]  for all f.
If H is large enough, mX may have sufficient information to 

determine the law of X

[ ])(, XfEfmX = )( Hf ∈∀

)],([)( XukEumX =

),()( XkX ⋅=Φ

HmX ∈

)].,([),(,)() uXkEukmum XX =⋅=Q

(by Riesz’s lemma)



6

Determining Class
Means determine a probability
Proposition

(Ω,B): measurable space.       P, Q: probabilities on (Ω,B).
If 

for every measurable function f, then, 

Proposition (e.g. [Dudley 9.3.1])
P, Q: Borel probabilities on a metric space.
If 

for every continuous and bounded function f, then, 

– The function class Cb(Ω) is a determining class of probabilities 
on a metric space. 

)]([)]([ ~~ XfEXfE QXPX =

.QP =

)]([)]([ ~~ XfEXfE QXPX =

.QP =
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Characteristic Kernels
When does a RKHS work as a determining class?
P :  family of all the probabilities on a measurable space (Ω, B).
H:  RKHS on Ω with measurable kernel k. 
mP: mean element on H for a probability 

– Definition:  the kernel k is called characteristic if the mapping 

is one-to-one.

– The mean element for a characteristic kernel uniquely determines a 
probability. 

– Analogous to the characteristic function of a random vector 

P∈P

PmPH a,→P

QPuumum QP =⇔Ω∈∀= )()()(

].[exp)(.f.Ch X Eu = 1 uX T−

)],([)(.. uXkEumei PP =
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Advantages of pos. def. kernel approach
– Empirical estimation is easy!

: sample  : sample on RKHS 

Empirical mean

– Application: 2-sample homogeneity test by MMD (Gretton et al. 2007)
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Statistical properties can be also derived. 
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Characterization of Independence
– Definition: cross-covariance operator

X , Y : general random variables on X and Y, resp. 
Prepare RKHS (HX, kX) and (HY , kY) defined on X and Y, resp.
Define an operator 

– Independence and Cross-covariance operator
Theorem

If the product kernel kXkY is characteristic, then

• c.f.  for Gaussian variables,

)])(),([Cov()]([)]([)]()([, YgXfXfEYgEXfYgEfg YX =−=Σ
for all ∈∈ gf ,

YXYX HH →Σ :

OXY =Σ⇔X and Y are independent 

OVXY =⇔ i.e. uncorrelatedX Y

HX HY



Characterization of Conditional 
Independence

X, Y, Z : random variables on X, Y, Z (resp.).
(HX, kX), (HY , kY),  (HZ , kZ) : RKHS defined on X, Y, Z (resp.).

– Conditional cross-covariance operator

Theorem (FBJ04, FBJ06, Sun et al 07)
Define the augmented variable                    and define a kernel 
on  X x Z by  

Assume and kZ are characteristic, then,

c.f. for Gaussian variables,

ZXZZYZYXZYX ΣΣΣ−Σ≡Σ −1
| YX HH →

),(~ ZXX =

ZXX kkk =~

⇔=Σ OZXY |~ X Y | Z

YX kk ~

⇔=− − OVVVV ZXZZYZYY
1 | ZX Y
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When is a kernel characteristic?
Shift-invariant kernels on Rm

Bochner’s theorem
φ(x): bounded continuous function on Rm. 
A shift-invariant kernel k(x, y) = φ(x - y) is positive definite 

if and only if there is a non-negative finite Borel measure       
such that  

– If Λ is given by  

– Shift-invariant characteristic kernel on Rm

Λ

).()()( 1 Gxdex xT
∈Λ= ∫ − ωφ ω

(Fourier transform of φ ). 
)0)(()( ≥ωλωωλ d

)(ˆ)( ωφωλ =

qpdxyqyxkdxypyxk =⇒−=− ∫∫ )()()()(

qpqp =⇒=− 0)ˆˆ(φ̂or
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– Observation:  if                on an interval of some frequency, then k
must not be characteristic. 

E.g. 

– Conjecture: if               for all ω, then k(x, y) = φ(x - y) is characteristic.

– Is B2n+1-spline kernel characteristic? 

0)(ˆ =ωφ

x
xx )(sin)( αφ = )()(ˆ ][2 ωωφ αα

π
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Locally Compact Abelian Group
– A Locally compact Abelian group (LCA group) 

is a locally compact topological space with commutative group 
structure (x + y = y + x) such the group operations                         
and                are continuous. 

– Examples
• Rn with usual addition.
• S1 (unit circle) with addition modulo 2π.
• Torus: S1 x …x S1

– Haar measure: shift-invariant measure.
There is a unique (up to scale) Radon measure* 

μ = dx on G s.t. 

* A Radon measure is a Borel measure s.t. (i)                 for all compact set K, 
(ii) 

yxyx +a),(

)()( ExE μμ =+ set)Borel:,( EGx ∀∈∀

}open:,|)(inf{compact}:,|)(sup{)( UUEKKEKKE ⊂=⊂= μμμ
∞<)(Kμ

xx −a
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Fourier Analysis on LCA Group
– Character of LCA group

– Dual group: G* = all the continuous characters on G.
The group operation is given by 

Examples
– (Rn,+):

– (S1,+):

Fact:   G* is also a LCA group if the weakest topology so that 
is continuous for every           is introduced.

Fact:  

C→G:ρ : character of a LCA group G
⇔
def.

),()()()(,1|)(| Gyxyxyxx ∈∀=+= ρρρρ

}|{ 1* nxT
eG R∈= − ωω (Fourier kernels)

}|{ 2
1

* Z∈=
−

neG
xn

π (Fourier kernels)

)(xρρ a Gx ∈

.** GG ≅ (Pontryagin duality)

).()(:))(( xxx τρρτ =
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– On LCA group, Fourier analysis is possible by using the continuous 
characters as Fourier kernel.

• Fourier transform of 

• Fourier transform of a measure 

• Convolution

• Fourier transform of convolution：

• Fourier inversion is also possible.

),(1 dxGLf ∈

dxxxff
G∫= )()()(ˆ ρρ (function on     )*G

).(GM∈μ

)()()(ˆ xdx
G

μρρμ ∫=

∫∫ −=−= dyyfyxgdyygyxfgf )()()()(*

∫ −= )()(* ydyxfg μμ

( ) gg ˆˆ* ^ μμ =

1 M(G) denotes the set of all bounded complex-valued Radon measures. 

1

).()()()(
*

GxdFxxF
G

∈= ∫ ρρρ
(
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Bochner’s Theorem
Shift-invariant kernel on LCA group

G: LCA group
Shift-invariant positive definite kernel:   k(x, y) = φ(x - y)

Bochner’s theorem
φ(x): bounded continuous function on a LCA group G. 
The kernel k(x, y) = φ(x - y) is positive definite if and only if there 

is a non-negative measure                    such that  

The non-negative measure                     is unique. 

)( *GM∈Λ

).()()()( * Gxdxx
G

∈Λ= ∫ ρρφ

)( *GM∈Λ

G G*
φ Λ

( )x,ρ
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– Support of a measure μ
}s.t.set open  allfor  0)(|{)(supp

Shift-invariant Characteristic Kernels

UxUUGx ∈≠∈= μμ

Theorem (Sriperumbudur et al, COLT2008, Fukumizu et al. 2008)

G: LCA group
k(x, y) = φ(x - y) :  shift-invariant positive definite kernel on G s.t.

where Λ is a non-negative finite Borel measure on G*.

k is characteristic if and only if  supp(Λ) = G*.

),()()()(
*

Gxdxx
G

∈Λ= ∫ ρρφ

shift-invariant p.d. kernel non-negative measure
shift-invariant 
characteristic 
kernel

non-negative 
measure with 
supp = G*

Fourier 

transform



– Examples
• Gaussian RBF kernels and Laplacican kernels are characteristic.

• B2n+1-spline kernel is characteristic.
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Summary
Kernel methods for statistical inference
– Transforming random variables into the feature space (RKHS). 
– Simple linear statistics on RKHS have rich information on the 

original variable.
– To maintain all the information on the variables, use characteristic 

kernels.

Shift-invariant characteristic kernels
– Shift invariant characteristic kernels on a locally compact Abelian

group can be determined completely by their Fourier transforms. 
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