Dependence Analysis with Reproducing Kernel Hilbert Spaces

Kenji Fukumizu
Institute of Statistical Mathematics Graduate University for Advanced Studies

Based on collaborations with M. Jordan (UC Berkeley),
F. Bach (Ecole Normale Supérieure), A. Gretton, X. Sun, and
B. Schölkopf (Max-Planck Institute)

7th World Congress on Statistics and Probability July 14-19, 2008. Singapore

Outline

- Introduction

■ Independence and conditional independence with RKHS

- Kernel dimension reduction for regression
- Summary

RKHS for statistical inference

■ "RKHS methods" for statistical inference

- Reproducing kernel Hilbert space (RKHS) / positive definite kernel:
capture "nonlinearity" or "higher-order moments" of data. e.g. Support vector machine.

- Recent studies:

RKHS applied to independence and conditional independence.

Positive definite kernel and RKHS

■ Positive definite kernel
Ω : set. $\quad k: \Omega \times \Omega \rightarrow \mathbf{R}$
k is positive definite if $k(x, y)=k(y, x)$ and for any $n \in \mathbf{N}, x_{1}, \ldots x_{n} \in \Omega$ the matrix $\left(k\left(x_{i}, x_{j}\right)\right)_{i, j} \quad$ (Gram matrix) is positive semidefinite.

- Example: Gaussian RBF kernel $\quad k(x, y)=\exp \left(-\|x-y\|^{2} / \sigma^{2}\right)$

■ Reproducing kernel Hilbert space (RKHS)
k : positive definite kernel on Ω.
$\Rightarrow \exists 1 \mathcal{H}$: Hilbert space consisting of functions on Ω such that

1) $k(\cdot, x) \in \mathcal{H}$ for all $x \in \Omega$.
2) $\operatorname{Span}\{k(\cdot, x) \mid x \in \Omega\}$ is dense in \mathcal{H}.
3) $\langle k(\cdot, x), f\rangle_{\mathcal{H}}=f(x) \quad \forall f \in \mathcal{H}, x \in \Omega$. (reproducing property)

- How to use RKHS for data analysis?

Transform data into RKHS.

$$
\begin{gathered}
\Phi: \Omega \rightarrow \mathcal{H}, \quad x \mapsto k(\cdot, x) \\
\text { i.e. } \quad \Phi(x)=k(\cdot, x)
\end{gathered}
$$

Data: $X_{1}, \ldots, X_{N} \quad \rightarrow \quad \Phi\left(X_{1}\right), \ldots, \Phi\left(X_{N}\right)$: functional data

Illustration of dependence analysis with RKHS

■ Why RKHS? Easy empirical computation

The inner product of \mathcal{H} is efficiently computable, while the dimensionality may be infinite.

$$
\begin{aligned}
& \langle\Phi(x), \Phi(y)\rangle=k(x, y) \\
& \quad f=\sum_{i=1}^{N} a_{i} \Phi\left(x_{i}\right), \quad g=\sum_{j=1}^{N} b_{j} \Phi\left(x_{j}\right) \quad \Rightarrow \quad\langle f, g\rangle=\sum_{i, j=1}^{N} a_{i} b_{j} k\left(x_{i}, x_{j}\right)
\end{aligned}
$$

- The computational cost essentially depends on the sample size N.
c.f. L^{2} inner product / power expansion

$$
(X, Y, Z, W) \mapsto\left(X, Y, Z, W, X^{2}, Y^{2}, Z^{2}, W^{2}, X Y, X Z, X W, Y Z, \ldots\right)
$$

- Advantageous for high-dimensional data of moderate sample size.
- Can be applied for non-Euclidean data (strings, graphs, etc.).

Outline

- Introduction

■ Independence and conditional independence with RKHS

- Kernel dimension reduction for regression

■ Summary

Covariance on RKHS

(X, Y) : random vector taking values on $\Omega_{X} \times \Omega_{Y}$.
$\left(\mathcal{H}_{X}, k_{X}\right),\left(\mathcal{H}_{Y}, k_{Y}\right)$ RKHS on Ω_{X} and Ω_{Y}, resp.
Define random variables on the RKHS \mathcal{H}_{X} and \mathcal{H}_{Y} by

$$
\Phi_{X}(X)=k_{X}(\cdot, X), \quad \Phi_{Y}(Y)=k_{Y}(\cdot, Y)
$$

Def. Cross-covariance operator $\Sigma_{Y X}: \mathcal{H}_{X} \rightarrow \mathcal{H}_{Y}$

$$
\Sigma_{Y X}=E\left[\Phi_{Y}(Y) \otimes \Phi_{X}(X)\right]-E\left[\Phi_{Y}(Y)\right] \otimes E\left[\Phi_{X}(X)\right]
$$

$$
\begin{array}{r}
\left\langle g, \Sigma_{Y X} f\right\rangle=E[g(Y) f(X)]-E[g(Y)] E[f(X)](=\operatorname{Cov}[f(X), g(Y)]) \\
\text { for all } \quad f \in \mathcal{H}_{X}, g \in \mathcal{H}_{Y}
\end{array}
$$

c.f. ordinary covariance matrix: $V_{X Y}=\operatorname{Cov}[X, Y]=E\left[Y X^{T}\right]-E[Y] E[X]^{T}$

Characterization of independence

■ Independence and cross-covariance operator
If the RKHS's are "rich enough" to express all the moments,

$$
X \Perp Y \Leftrightarrow \Sigma_{X Y}=O \quad\left[\begin{array}{r}
\Leftrightarrow[g(Y) f(X)]=E[g(Y)] E[f(X)] \\
\text { for all } f \in \mathcal{H}_{X}, g \in \mathcal{H}_{Y}
\end{array}\right.
$$

f and g are test functions to compare the moments with respect to $P_{X Y}$ and $P_{X} P_{Y}$.

- Analog to Gaussian random vectors: $X \Perp Y \Leftrightarrow V_{Y X}=O$.
- c.f. characteristic function

$$
\begin{array}{r}
\left.\left.X \Perp Y \quad \Leftrightarrow \quad E_{X Y}\left[e^{\sqrt{-1} \omega^{T} X} e^{\sqrt{-1} \eta^{T} Y}\right]=E_{X} \mid e^{\sqrt{-1} \omega^{T} X}\right\rfloor E_{Y} \mid e^{\sqrt{-1} \eta^{T} Y}\right\rfloor \\
\text { for all } \omega \text { and } \eta .
\end{array}
$$

- Applied to independence test (Gretton et al. 2008).

Characteristic kernels

■ A class for determining a probability

X : random variable taking values on Ω.
(\mathcal{H}, k): RKHS on Ω with a bounded measurable kernel k.
\mathcal{H} (or k) is called characteristic if, for probabilities P and Q on Ω,

$$
E_{X \sim P}[f(X)]=E_{X \sim Q}[f(X)] \quad(\forall f \in \mathcal{H}) \quad \text { means } \quad P=Q .
$$

(\mathscr{H} works as a class of test functions to determine a probability.)

- If $\mathcal{H}_{X} \otimes \mathcal{H}_{Y}$ given by the product kernel $k_{X} k_{Y}$ is characteristic,

$$
\begin{gathered}
X \Perp Y \quad \Leftrightarrow \quad \Sigma_{X Y}=0 . \\
\left(\Sigma_{X Y}=O \Longleftrightarrow E_{P_{X Y}}[f(X) g(Y)]=E_{P_{X} P_{Y}}[f(X) g(Y)] \Rightarrow P_{X Y}=P_{X} P_{Y} .\right)
\end{gathered}
$$

- An example on \mathbf{R}^{m} : Gaussian RBF kernel $\exp \left(-\|x-y\|^{2} / \sigma^{2}\right)$

Estimation of cross-cov. operator

$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{N}, Y_{N}\right)$: i.i.d. sample on $\Omega_{X} \times \Omega_{Y}$.

$$
\begin{gathered}
\hat{\Sigma}_{Y X}^{(N)}=\frac{1}{N} \sum_{i=1}^{N} k_{Y}\left(\cdot, Y_{i}\right) \otimes k_{X}\left(\cdot, X_{i}\right)-\left(\frac{1}{N} \sum_{i=1}^{N} k_{Y}\left(\cdot, Y_{i}\right)\right) \otimes\left(\frac{1}{N} \sum_{i=1}^{N} k_{X}\left(\cdot, X_{i}\right)\right) . \\
\quad(\text { rank } \leq N) \\
\left\langle g, \hat{\Sigma}_{Y X}^{(N)} f\right\rangle=\frac{1}{N} \sum_{i=1}^{N} g\left(Y_{i}\right) f\left(X_{i}\right)-\left\{\frac{1}{N} \sum_{i=1}^{N} g\left(Y_{i}\right)\right\}\left\{\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)\right\} .
\end{gathered}
$$

$\hat{\Sigma}_{Y X}^{(N)}$ is represented by the Gram matrices.
Theorem

$$
\left\|\hat{\Sigma}_{Y X}^{(N)}-\Sigma_{Y X}\right\|_{H S}=O_{p}(1 / \sqrt{N}) \quad(N \rightarrow \infty)
$$

- A uniform law of large numbers follows:

$$
\sup _{\|f\|_{H_{X}} \leq 1,\|g\|_{H_{Y}} \leq 1} \mid \operatorname{Cov}_{e m p}[f(X), g(Y)]-\operatorname{Cov}[f(X), g(Y)] \rightarrow 0 \quad \text { in pr. } \quad(N \rightarrow \infty) .
$$

- Weak convergence of $\sqrt{N}\left(\hat{\Sigma}_{Y X}^{(N)}-\Sigma_{Y X}\right)$ to a Gaussian process on $\mathcal{H}_{X} \otimes \mathcal{H}_{Y}$ is also known.

RKHS and conditional independence

■ Conditional covariance operator
X and Y : random variables. $\mathcal{H}_{X}, \mathcal{H}_{Y}$: RKHS with kernel k_{X}, k_{Y}, resp.
Def. $\Sigma_{Y Y \mid X} \equiv \Sigma_{Y Y}-\Sigma_{Y X} \Sigma_{X X}{ }^{-1} \Sigma_{X Y}$: conditional covariance operator on \mathcal{H}_{Y}
(Analogous to conditional covariance matrix $V_{Y Y}-V_{Y X} V_{X X}{ }^{-1} V_{X Y}$)

- Relation to conditional variance: If k_{X} is characteristic (e.g Gaussian RBF kernel),

$$
\begin{array}{r}
\left\langle g, \Sigma_{Y Y \mid X} g\right\rangle=E[\operatorname{Var}[g(Y) \mid X]]=\inf _{f \in \mathscr{H}_{X}} E(g(Y)-E[g(Y)])-(f(X)-E[f(X)])^{2} \\
\left(\forall g \in \mathcal{H}_{Y}\right)
\end{array}
$$

- Empirical estimator

$$
\hat{\Sigma}_{Y Y \mid X}^{(N)}=\hat{\Sigma}_{Y Y}^{(N)}-\hat{\Sigma}_{Y X}^{(N)}\left(\hat{\Sigma}_{X X}^{(N)}+\varepsilon_{N} I\right)^{-1} \hat{\Sigma}_{X Y}^{(N)}
$$

ε_{N} : regularization coefficient
Can be represented by Gram matrices.

■ Conditional independence

Theorem (FBJ 2004, 2006)

U, V, and Y are random variables on Ω_{U}, Ω_{V}, and Ω_{Y}, resp.
$\mathcal{H}_{U}, \mathcal{H}_{V}, \mathcal{H}_{Y}$: RKHS on $\Omega_{U}, \Omega_{V}, \Omega_{Y}$ with kernel k_{U}, k_{V}, k_{Y}, resp.
$X=(U, V)$. RKHS on $\Omega_{X}=\Omega_{U} \times \Omega_{V}$ is defined by $k_{X}=k_{U} k_{V}$.
Assume $\mathcal{H}_{X}, \mathcal{H}_{U}$: characteristic. Then,

$$
\begin{array}{cc}
\Sigma_{Y Y \mid U} \geq \Sigma_{Y Y \mid X} \quad & \geq: \text { the partial order of } \\
\text { self-adjoint operators }
\end{array}
$$

If further \mathcal{H}_{Y} is characteristic, then

$$
Y \Perp X \mid U \quad \Leftrightarrow \quad \Sigma_{Y Y \mid U}=\Sigma_{Y Y \mid X}
$$

$\operatorname{Tr}\left[\Sigma_{Y Y \mid U}-\Sigma_{Y Y \mid X}\right\rfloor$ works as a measure of conditional independence.
$B \geq A$ means that $B-A$ is positive semidefinite.

Outline

- Introduction
- Independence and conditional independence with RKHS
- Kernel dimension reduction for regression
- Summary

Dimension reduction for regression

- Regression: $\quad Y$: response variable, $X=\left(X_{1}, \ldots, X_{m}\right)$: m-dim. explanatory variable
- Goal of dimension reduction for regression $=$ Find an effective direction for regression (EDR space)

$$
\begin{array}{r}
p(Y \mid X)=\tilde{p}\left(Y \mid b_{1}^{T} X, \ldots, b_{d}^{T} X\right) \quad\left(=\tilde{p}\left(Y \mid B^{T} X\right)\right) \\
B=\left(b_{1}, . ., b_{d}\right): m \times d \text { matrix } d \text { is fixed. }
\end{array}
$$

- Existing methods:

Sliced Inverse Regression (SIR, Li 1991), principal Hessian direction (pHd, Li 1992),
SAVE (Cook\&Weisberg 1991), MAVE (Xia et al 2002), contour regression (Li et al 2005), among others.

Kernel Dimension Reduction

(Fukumizu, Bach, Jordan 2004, 2006)
Use characteristic kernels for $B^{T} X$ and Y.

$$
\begin{aligned}
& \Sigma_{Y Y \mid B^{T} X} \geq \Sigma_{Y Y \mid X} \\
& \Sigma_{Y Y \mid B^{T} X}=\Sigma_{Y Y \mid X} \quad \Leftrightarrow \quad X \Perp Y \mid B^{T} X \quad \text { EDR space }
\end{aligned}
$$

- KDR objective function

$$
\min _{B: B^{T} B=I_{d}} \operatorname{Tr}\left[\Sigma_{Y Y \mid B^{T} X}\right]
$$

- KDR contrast function with finite sample

$$
\min _{B: B^{T} B=I_{d}} \operatorname{Tr}\left[G_{Y}\left(G_{B^{T} X}+N \varepsilon_{N} I_{N}\right)^{-1}\right]
$$

where

$$
\begin{aligned}
& G_{B^{T} X}=\left(I_{N}-\frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{T}\right) K_{B^{T} X}\left(I_{N}-\frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{T}\right): \text { centered Gram matrix } \\
& K_{B^{T} X, i j}=k_{d}\left(B^{T} X_{i}, B^{T} X_{j}\right)
\end{aligned}
$$

KDR method

- Wide applicability of KDR
- The most general approach to dimension reduction:
- no model is used for $p(Y \mid X)$ or $p(X)$.
- no strong assumptions on the distribution of X, Y and dimensionality/type of Y.
- Most conventional methods have some restrictions.
- Computational issues
- Computational cost with matrices of sample size. \rightarrow Low-rank approximation, e.g. incomplete Cholesky decomposition.
- Non-convex contrast function, possibly local minima.
\rightarrow Gradient method with an annealing technique starting from a large σ in Gaussian RBF kernel.

Consistency of KDR

Theorem (FBJ2006)

Suppose k_{d} is bounded and continuous, and

$$
\varepsilon_{N} \rightarrow 0, N^{1 / 2} \varepsilon_{N} \rightarrow \infty(N \rightarrow \infty)
$$

Let S_{0} be the set of the optimal parameters;

$$
S_{0}=\left\{B \mid B^{T} B=I_{d}, \operatorname{Tr}\left[\Sigma_{Y Y \mid B^{T} X}\right\rfloor=\min _{B^{\prime}} \operatorname{Tr}\left[\Sigma_{Y Y \mid B^{T T} X}\right\rfloor\right\}
$$

Estimator: $\quad \hat{B}^{(N)}=\min _{B: B^{T} B=I_{d}} \operatorname{Tr}\left[G_{Y}\left(G_{B^{T} X}+N \varepsilon_{N} I_{N}\right)^{-1}\right]$
Then, under some conditions, for any open set $U \supset S_{0}$

$$
\operatorname{Pr}\left(\hat{B}^{(N)} \in U\right) \rightarrow 1 \quad(N \rightarrow \infty)
$$

Numerical results with KDR

■ Synthetic data (A)

$$
\begin{aligned}
& X: 4 \mathrm{dim} . \sim N\left(0, I_{4}\right) \\
& Y=\frac{X_{1}}{0.5+\left(X_{2}+1.5\right)^{2}}+\left(1+X_{2}\right)^{2}+W . \quad W \sim N\left(0, \tau^{2}\right) . \tau=0.1,0.4,0.8
\end{aligned}
$$

Sample size $N=100$

τ	KDR		SIR		SAVE		pHd	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
0.1	0.11	± 0.07	0.55	± 0.28	0.77	± 0.35	1.04	± 0.34
0.4	0.17	± 0.09	0.60	± 0.27	0.82	± 0.34	1.03	± 0.33
0.8	0.34	± 0.22	0.69	± 0.25	0.94	± 0.35	1.06	± 0.33

Frobenius norms of the projection matrices over 100 samples. (Means and standard deviations)

■ Synthetic data (B)

$$
\begin{aligned}
& X: 10 \text { dim. } \sim N\left(0, I_{4}\right) \\
& Y=\frac{1}{2}\left(X_{1}-a\right)^{2} W . \quad W \sim N(0,1) . \quad a=0,0.5,1 .
\end{aligned}
$$

Sample size $N=500$

	KDR		SIR		SAVE		pHd	
a	Mean SD	Mean SD	Mean SD	Mean	SD			
0.0	0.17	± 0.05	1.83	± 0.22	$0.30 ~$	0.07	1.48	
± 0.27								
0.5	0.17	± 0.04	0.58	± 0.19	0.35	± 0.08	1.52	
± 0.28								
1.0	0.18	± 0.05	0.30	± 0.08	0.57	± 0.20	1.58	

KDR on Real data

- Wine data

Data

13 dim. 178 data 3 classes
2 dim. projection

$$
k\left(z_{1}, z_{2}\right)
$$

$$
=\exp \left(-\left\|z_{1}-z_{2}\right\|^{2} / \sigma^{2}\right)
$$

$$
\sigma=30
$$

${ }^{20}$ Sliced Inverse Regression

- Swiss bank notes data

X : 6 dim. (measurements of each bank note)
Y : binary (genuine/counterfeit)
100 counterfeits \bullet and 100 genuine notes \bullet

$$
k\left(z_{1}, z_{2}\right)
$$

$$
=\exp \left(-\left\|z_{1}-z_{2}\right\|^{2} / a\right)
$$

Summary

■ Positive definite kernels give a nice tool for dependence analysis

- Covariance and conditional covariance operators on RKHS characterize independence and conditional independence.
- Kernel dimension reduction for regression (KDR)
- The most general approach to dimension reduction.

■ Future/ongoing studies

- Choice of kernel. Better than heuristics.
- Choice of dimensionality for KDR.
- Further asymptotic properties of the KDR estimator.

References

Fukumizu, K., F.R. Bach, and M.I. Jordan. Dimensionality reduction for
supervised learning with reproducing kernel Hilbert spaces.
Journal of Machine Learning Research. 5(Jan):73-99, 2004.

Fukumizu, K., F. Bach and M. Jordan. Kernel dimension reduction in regression.
Tech. Report 715, Dept. Statistics, University of California, Berkeley, 2006.

Gretton, A. K. Fukumizu, C.H. Teo, L. Song, B.Schölkopf, A. Smola. A Kernel
Statistical Test of Independence.
Advances in Neural Information Processing Systems 20:585-592. 2008.

Fukumizu, K., A. Gretton, X. Sun., and B. Schölkopf. Kernel Measures of
Conditional Dependence.
Advances in Neural Information Processing Systems 20:489-496. 2008.

