
1

Learning Causal Structure with 
Kernel-based Dependence Measures

Kenji Fukumizu

Institute of Statistical Mathematics
Graduate University for Advances Studies

Joint work with Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf, and 
Arthur Gretton.

November 3-4, 2007



2

Outline

1. Introduction

2. Kernel measures for dependence

3. Kernel measures for conditional dependence

4. Causal inference with kernels 
– Kernel-based Causal Learning algorithm –

5. Conclusion



3

Introduction
Conditional independence in causal learning
– Determining independence and conditional independence is 

essential in causal learning. 

– But, in practice
• Dependence for continuous domain is not straightforward.

How can we estimate mutual information?
• Many algorithms use linear statistical methods (partial 

correlation) or discretization.
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“Kernel methods” for dependence of variables
– Positive definite kernels have been used for capturing nonlinearity of 

original data.     e.g. Support vector machine. 

– Kernelization:  mapping data into a functional space (RKHS) and 
apply linear methods on RKHS.

– Recently, kernel methods have been applied for dependence 
analysis.  Covariance structure on RKHS gives dependence and 
conditional dependence of the original variables. 
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Positive Definite Kernel and RKHS
Positive definite kernel (p.d. kernel)
Ω: set.
k is positive definite if  k(x,y) = k(y,x) and for any
the matrix                       (Gram matrix) is positive semidefinite.  

– Example: Gaussian RBF kernel

Reproducing kernel Hilbert space (RKHS)
k: p.d. kernel on Ω.     

H :  reproducing kernel Hilbert space  (RKHS)
1)
2)                                     is dense in H. 
3)

R→Ω×Ω:k
Ω∈∈ nxx,n K,1N

( )
jiji xxk

,
),(

Hxk ∈⋅ ),( for all .Ω∈x

)(),,( xffxk H =⋅ (reproducing property)
{ }Ω∈⋅ xxk |),(Span

1∃

( )22exp),( σyxyxk −−=
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Feature map / feature vector

Data:  X1, …, XN ΦX(X1),…, ΦX(XN) : functional data

Why RKHS?
– By the reproducing property, computation of the inner product on

RKHS does not need expansion by basis functions.

The computational cost essentially depends on the sample size. 
Advantageous for high-dimensional data of small sample size. 

),(,: xkxH ⋅→ΩΦ a ),()(.. xkxei ⋅=Φ

,),()(1 ∑∑ ⋅=Φ= = i ii
N
i ii xkaxaf 1 ( ) ( , )N

j j j jj jg b x b k x== Φ = ⋅∑ ∑
∑= ji jiji xxkbagf , ),(,

),()(),( yxkyx =ΦΦ
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Covariance on RKHS
– Linear case (Gaussian):  

Cov[X, Y] = E[YXT] – E[Y]E[X]T : covariance matrix

– On RKHS:
X , Y : random variables on ΩX and ΩY , resp. 
Prepare RKHS (HX, kX) and (HY , kY) defined on ΩX and ΩY, resp.
Define random variables on the RKHS HX and HY by

Define the big (possibly infinite dimensional) covariance matrix ΣYX
on the RKHS.  

),()( XkX XX ⋅=Φ ),()( YkY YY ⋅=Φ

ΩX ΩY

ΦX ΦY

HX HY

X Y

ΦX(X) ΦY(Y)

YXΣ
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Cross-covariance operator
– Definition

ΣYX is an operator from HX to HY such that 

–

)])(),([Cov()]([)]([)]()([, YgXfXfEYgEXfYgEfg YX =−=Σ

for all YX HgHf ∈∈ ,

c.f.  Euclidean case
VYX = E[YXT] – E[Y]E[X]T : covariance matrix
( ) )],(),,[(, XaYbCovaVb YX =

]),([)]([]),()([ ⋅ΦΦ−⋅ΦΦ=Σ XEYEXYE XYXYYX
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Higher-order moments
Suppose X and Y are R-valued, and k(x,u) admits the expansion

With respect to the basis 1, u, u2, u3, …, the random variables on 
RKHS are expressed by
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The operator ΣYX contains the information on all the 
higher-order correlation.
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Characterization of Independence
Independence and Cross-covariance operator
If the RKHS’s are “rich enough” to express all the moments,

– c.f. for Gaussian variables

OXY =Σ⇔X and Y are independent 

(      is always true.      
requires some assumption

)]([)]([)]()([ XfEYgEXfYgE =

for all YX HgHf ∈∈ ,

or
0)](),([Cov =YgXf

OVXY =⇔X and Y are independent i.e. uncorrelated

Gaussian RBF kernels gives 
the above equivalence. 

( )22exp),( σyxyxk −−=
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Kernel Dependence Measure
– Hilbert-Schmidt Independence Criteria (HSIC)

– Empirical estimator

– Hilbert-Schmidt norm of an operator

: complete orthonormal system of H1 and H2 (resp.).

2),( HSYXYXHSIC Σ=

X Y⇔= 0HSIC

21: HHA → operator on a Hilbert space
{ },iϕ { }jψ

∑ ∑= j i ijHS AA
22 , ϕψ c.f. Frobenius norm of a matrix

[ ]YXHS
N

YXemp GGYXHSIC Trˆ),(
2)( =Σ=

( ) ( )T
NNNNX

T
NNNNX IKIG 11 11 11 −−= : centered Gram matrix

( )N
jijiX XXkK

1,
),(

=
=
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Independence Test
Permutation test for independence
– Null hypothesis   

H0: 

– Permutation test:  simulation of the distribution of test statistics 
under H0. 

• Make many samples consistent with the null hypothesis by 
random permutations of the original sample.

• Compute the values of test statistics (dependence measure)  for 
the samples. 

• Compute the critical region for a prescribed significance level.

X1 X2 X3 X4 X5 X6 X7 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y5 Y1 Y7 Y4 Y2 Y6 Y3
independent

X Y
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Experiments of independence test
– Synthesized data: two d-dimensional samples

• H0: X and Y are independent
• Significance level = 5%

),...,(),...,,...,( )()(
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d XXXX ),...,(),...,,...,( )()(

1
)1()1(

1
N

d
N

d YYYY

strength of dependence



15

Power Divergence (Ku&Fine05, Read&Cressie)
– Make partition            :  Each dimension is divided into q parts so 

that each bin contains almost the same number of data. 

– Power-divergence

– Null distribution under independence

– Estimation for high-dimensional data is difficult.

∑ ∏
∈ = ⎭
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Conditional Covariance on RKHS
Conditional Cross-covariance operator
X, Y, Z : random variables on ΩX, ΩY, ΩZ (resp.).
(HX, kX), (HY , kY),  (HZ , kZ) : RKHS defined on ΩX, ΩY, ΩZ (resp.).

– Conditional cross-covariance operator

– c.f. For Gaussian variables
Conditional covariance of Y given X is equal to 

ZXZZYZYXZYX ΣΣΣ−Σ≡Σ −1
|

YX HH →

ZXZZYZYXZYX VVVVV 1
|

−−≡
(conditional covariance matrix)
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Conditional independence with kernels
Theorem

Define the augmented variable                    and define a kernel 
on               by  

Under some richness assumption, which is satisfied by Gaussian 
RBF kernels,  

ZX Ω×Ω
),(~ ZXX =

ZXX kkk =~

⇔=Σ OZXY |~ X Y | Z

⇔=Σ⇔=Σ⇔=Σ OOO ZXYZXYZXY |~~|~|~ X Y | Z
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Kernel conditional dependence measure
– Hilbert-Schmidt conditional independent criterion

– Empirical measure

Consistency 
If the regularization coefficient satisfies

then

( )[ YZNNZXYX GGINGGGG 12Tr −+−= ε

( ) ( ) ]YZNNZXNNZZ GGINGGINGG 11 −− +++ εε

2

|~~)|,(
HSZXYZYXHSCIC Σ=

( ) 2
)(

~
1)()(

~
)(

~~ ˆˆˆˆ)|,(
HS

N
XZN

N
ZZ

N
ZY

N
XYemp IZYXHSCIC Σ+ΣΣ−Σ=

−
ε

)( ∞→→ NHSCICHSCICemp

0→Nε ,3/1 ∞→NN ε
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Permutation test with the kernel measure

– If Z takes values in a finite set {1, …, L},
set 

otherwise, partition the values of Z into 
L subsets C1, …, CL, and set  

– Repeat the following process B times: (b = 1, …, B)
1. Generate pseudo cond. independent 

data D(b) by permuting  X data within each 
2. Compute TN

(b) for the data D(b) .

– Set the threshold by the (1-α)-percentile of 
the empirical distributions of TN

(b).

2)(
|

ˆ
HS

N
ZYXNT Σ=

),,...,1(}|{ LZiA i === lll

).,...,1(}|{ LCZiA i =∈= lll
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Approximate null distribution 
under cond. indep. assumption
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Causal Inference from 
Non-Experimental Data

Constraint-based method
– Determine the (cond.) independence of the underlying probability. 
– Relatively efficient for hidden variables.

Score-based method
– Structure learning of Bayesian network
– Able to use informative prior. 
– Optimization in huge search space.
– Many methods assume discrete variables (discretization) or 

parametric model. 

Kernel-based Causal Learning
– Constraint-based method.  A variant of Inductive Causation (IC)
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Fundamental Assumptions
Causal Markov Condition
– Causal relation is expressed by a DAG, and the probability 

generating data is consistent with the graph. 

Causal Faithfulness Condition
– The inferred DAG (causal structure) must express all the 

independence relations. 

This includes the true probability 
as a special case, but the structure
does not express 

c

d

ba

c

d

ba

c

d

ba

a b

unfaithfultrue

)|(),|()()()( cdbacba XXpXXXpXpXpXp =
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Inductive Causation
IC algorithm (Verma&Pearl 90)

Input  – V: set of variables,     D: dataset of the variables. 
Output – DAG (specifies an equivalence class, directed partially)

1. For each                                    ,  search for 
such that 

Construct an undirected graph (skeleton) by making an edge 
between a and b if and only if no set Sab can be found.  

2. For each nonadjacent pair (a,b) with a – c – b,  direct the edges 
by                     if

3. Orient as many of undirected edges as possible on condition 
that neither new v-structures nor directed cycles are created. 

)(),( baVVba ≠×∈ },{\ baVSab ⊂

| SabXa Xb

bca ←→ abSc∉
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Kernel-based Causal Leaning
Limitations of the previous implementations of IC
– Linear / discrete assumptions in Step 1.

e.g. PC-algorithm (Spirtes & Glymour 91) uses partial correlation 
and χ2 test. 

Difficulty in testing conditional independence for continuous 
variables. 

kernel method!

– Errors of the skeleton in Step 1 cannot be recovered in the later 
steps.

voting method for direction

Note:  The error in Step 1 is inevitable by statistical tests. 
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KCL algorithm (Sun et al. ICML07, Sun et al. 2007)

– Dependence measure: 

– Conditional dependence measure: 

where the operator                             is defined by  

Motivation:  make               and                 comparable 

Theorem

2)()( ˆˆ
HS

N
YX

N
YX HSIC Σ==H

2

2)(
|~~

)(
|

ˆ
ˆ

HSZZ

HS

N
ZXYN

ZYX C

Σ
≡H

[ ])()(, ZgZfEgCf ZZ =
ZZZZ HHC →:

2)(ˆ
HS

N
YXΣ

2)(
|~~ˆ

HS

N
ZXYΣ

(X, Y) Z, 2)(22)(
|~~ ˆˆ

HS
N

YXHSZZHS

N
ZXY C Σ=ΣIf
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Outline of KCL algorithm: IC algorithm is modified as follows.

KCL-1:  Skeleton by statistical tests with the kernel measure
(1) Permutation tests of conditional independence 
(2) Connect X and Y if no such SXY exists. 
The candidates of SXY should be restricted explained later.

KCL-2:  Voting for unshielded triplets
For each triplet X – Z – Y (X and Y not adjacent),  compute 

Give a vote to the direction X Z and Y Z if 

Make an arrow to each edge if a vote is given ( “ ” is allowed).

KCL-3:  Same as IC-3

)(
|

ˆ N
ZYXH

| SXYX Y

YZXXYZN
YX

N
ZYX

ZXY MMM ||)(

)(
|

| ,,ˆ
ˆ

H

H
≡

{ }YZXXYZZXY MMM ||| ,max> Z

X Y

Z

X Y

W
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KCL-4:  Voting for shielded triplets
For each triplet X – Z – Y (X and Y adjacent),  compute 

Give a vote to the direction X Z and Y Z if 

Make an arrow to each edge if a vote is given ( “ ” is allowed).

– The resulting graph is mixed:  undirected       , directed      , or 
bi-directed        .

– Motivation of KCL-2 and 4:
• By inevitable errors in statistical tests, it is preferred that the 

orientation process be separated from Step 1. 
• Step 4 looks for more directed edges.  

It relies on the heuristic assumption that conditioning common 
effect strengthens the dependence between the causes. 

YZXXYZZXY MMM ||| ,,

{ }YZXXYZZXY MMM ||| ,max> Z

X Y
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Illustration of KCL

true KCL-1 KCL-2 KCL-3 KCL-4

Heuristic assumption: M MM> ,

Conditioning common effect strengthens the dependence 
between the causes. 
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Details of Step 1
Auxiliary partially directed graphs are used for restricting conditioning 

variables SXY . 
– Initialize G by a complete undirected graph.
– 1(a): Unconditional independence tests

For all pairs (X,Y), apply permutation tests for            with  
Remove X – Y if the independence is accepted.  

– 1(b): Auxiliary graph
Orient G by majority votes on all triplets X – Y – Z.  

– 1(c): Cond. indep. tests                     with           in the auxiliary graph.
SXY: only variables in the directed (incl. undirected) path 

between X and Y. 
– 1(d): Change the directed edges into undirected ones to make a 

skeleton G. 
– 1(e): Repeat (a)-(d) until nothing changes. 

X Y )(ˆ N
YXH

| SXYX Y )(
|

ˆ N
ZYXH
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Experiments with Simple Networks
(A) (C)(B)
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8.0)|( 112 == XXXP
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1X
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4X
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3X
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( ) 2.02.018.0),,|1( 1
11 +−×== ++
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nXX
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- Results 
(200 data,
1000 runs)

KCL

PC

BN-PC
(MI is used)
[Cheng et al. ’02]

BDe
(Score-based)
[Heckerman et al. ’97]

87.3

98.198.1

96.8

94.294.2

72.0

71.471.4

99.4

91.088.9

71.8

91.0
74.3 93.8

96.4

71.9

96.8

96.2
98.5 99.0

99.5

98.5

96.9

59.4
97.0 68.1

52.8

97.6

98.8

49.5
99.4 60.5

61.1

98.7

1X

3X

2X

4X

1X

3X

2X

4X

1X

3X

2X

(A) (B) (C)

84.0

47.2
51.3

67.0
62.5

95.6

69.8

55.8
47.2

59.8

54.9
61.7

71.6

52.8
47.7 59.5

82.5

51.3

74.6

62.249.8

46.5

54.0
69.3
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Hidden Common Cause
– One of the difficulties in causal leaning is possible existence of 

common hidden causes. 

– Some methods can handle hidden variables.
FCI (Fast Causal Inference, Spirtes et al. 93) extends PC to allow 
hidden variables. 

Smoking Cancer
Smoking Cancer

Hidden common 
cause
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KCL for hidden common causes
– A bi-directional arrow ( ) given by KCL may suggest existence of a  

hidden common cause.  
Empirically verified in some situations, but no theoretical justification.

– Illustration

Truth

Voting

Result

Latent Latent Latent
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– Experiments (200 data, 1000 runs)

L

Y1

X2

Y1

X1 X3

Latent

OR gates

L

Y1 X2

Y3 X3

Y1

X1

Noisy OR gates

Y1

X2

Y1

X1 X3

Truth

Result of KCL

Latent

Y1 X2

Y3 X3

Y1

X1 43.5

43.7

43.9

72.5

74.5

74.7

76.5

79.2 87.8 90.8
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Experiments with Real Data
Smoking and Cancer
– Data:  5 continuous variables, N = 44

CIGARET: Cigarettes sales in 43 states in US and District of 
Columbia

BLADDER, LUNG, KIDNEY, LEUKEMIA:  death rates from 
various cancers

– Results

BLADDER

LUNGCIGARET

KIDNEY

LEUKEMIA

KCL
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Montana Economic Outlook Poll (1992)
– Data:  7 discrete variables, N = 209

AGE (3),  SEX (2),  INCOME (3),  POLITICAL (3),  AREA (3), 
FINANCIAL status (3, better/same/worse than a year ago),
OUTLOOK (2)

SEX

INCOME

AGE

FINANCIAL

OUTLOOK POLITICAL

AREA

SEX

INCOME

AGE

FINANCIAL

OUTLOOK POLITICAL

AREA

SEX

INCOME

AGE

FINANCIAL

OUTLOOK POLITICAL

AREA

FCI

BN-PC

KCL
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Conclusion
Kernel measures of (conditional) dependence
– Covariance and conditional covariance considered on RKHS 

provide criterion of independence and conditional independence, 
resp. 

– Kernel measures are proposed for (conditional) dependence.

Causal inference from non-experimental data
– Kernel-based Causal Learning (KCL) algorithm 

• Constraint-based method:  A variant of Inductive Causation
– Conditional independence tests with kernel measures
– Voting method for orienting edges

• KCL can handle discrete and continuous domains in a unified 
way. 

• More theoretical justification is required. 
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