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Outline
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– Dimension reduction for regression
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Introduction
! Dimension reduction for regression

– Regression

Y: response variable,   X: m-dim. explanatory variable,   Z: noise

– Goal:    Find effective subspace defined by B. 

• Effective subspace to explain Y.
• Compact representation of the statistical relation.

– data analysis : what determines Y ?. 
– preprocessing of regression:  

accuracy of regression,  computational efficiency.

or),(~ ZXfY )|( XYp
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Introduction

! Semi-parametric problem
Assume 

i.i.d. sample                                          given.

Find the subspace B0 without knowing anything about pY|X (or     ).

There is the infinite degree of freedom on unestimated p. 
" Semiparametric problem. 

! Approach
– Formulate the problem by conditional independence.
– Use reproducing kernel Hilbert spaces as functional spaces for 

the infinite degree of freedom.  

)|(~)|( 0| XBYpXYp T
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Existing Methods
! Sliced Inverse Regression (SIR, Li 1991)

– PCA of E[X|Y] " use slice of Y .
– Semiparametric method:  no assumption on p(Y|X).
– Elliptic assumption on the distribution of X is necessary.  

! Principle Hessian Direction (pHd, Li 1992)
– Average Hessian                                                 is used.
– If X is Gaussian, eigenvectors gives the effective directions.
– Gaussian assumption on X.  Y must be one-dimensional.

! Projection pursuit approach (e.g. Friedman et al. 1981)
– Additive model is used for regressor. 

! Canonical Correlation Analysis (CCA) / Partial Least Square (PLS)
– Linear assumption on the regression.

]))()([( T
yxx XXXXYYE −−−≡Σ
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Conditional Independence
! Dimension reduction and conditional independence

(U, V)=(BTX, CTX) for  

B gives the effective subspace    

! Characterization of 
conditional independence

)(),( mOCB ∈

)|()|( || xBypxyp T
UYXY =⇔

vuyuypvuyp UYVUY ,,  )|(),|( |,| all for=⇔

X
U V

Y
⇔ Conditional independence UVY |⊥

Reproducing kernel Hilbert space (RKHS) 
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Reproducing Kernel Hilbert Space
! Definition

Ω : set.     H :  Hilbert space 
H :  reproducing kernel Hilbert space  (RKHS)

– Example: Gaussian kernel

}:{ R→Ω⊂ f

R→Ω×Ω∃⇔ :k symmetric function (reproducing kernel)  s.t.
H∈⋅ ),( xk for all .Ω∈x1)

2) )(),,( xffxk =⋅ H for ., Ω∈∈∀ xf H reproducing property

Reproducing property makes computation easy and feasible.
e.g.)

def

For ∑∑ == ⋅=⋅= m
j jj

n
i ii XkbgXkaf 11 ),(,),(

∑= ij jiji XXkbagf ),(, H

( )22exp),( σyxyxk −−=,: RRR →× mmk
There is a RKHS on Rm with reproducing kernel k.  
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RKHS and Independence
! Independence and characteristic functions

Random variables X and Y are independent

! RKHS characterization
HX and HY  are RKHS on ΩX and ΩY, respectively.
Random variables               and              are independent

[ ] [ ] [ ]Y
Y

X
X

YX
XY

TTTT

eEeEeeE ηωηω 1111 −−−− =⇔ for all ω and η.

work as test functions 
which account for the infinite degree of freedom (L2).  

[ ] [ ] [ ])()()()( YgEXfEYgXfE YXXY =⇔ for all YX gf HH ∈∈ ,

yx TT

ee ηω 11   −− and

This is true if HX and HY are RKHS for Gaussian kernels. 
(Bach & Jordan 2002) 

XX Ω∈ YY Ω∈
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Cross-covariance Operator
! Definition

X and Y:  random variable on ΩX and ΩY, respectively.
HX and HY  : RKHS on ΩX and ΩY, respectively, with bounded kernels.
We can define a bounded operator                               by

! Cross-covariance operator and Independence

YXYX HH →Σ :

)]([)]([)]()([, YgEXfEYgXfEfg YXXYYX
Y

−=Σ H

for all YX gf HH ∈∈ ,
ΣYX is called cross-covariance operator.

Theorem
HX and HY  : RKHS with Gaussian kernel.  

OYX =Σ⇔X and Y are independent

( ))](),([Cov YgXf=
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RKHS and Conditional Independence
! Conditional covariance 

X and Y are random vectors.   HX , HY : RKHS with kernel kX, kY, resp.
Assumption:                ,   1

– Monotonicity of conditional covariance operators
Y,  X = (U,V) : random vectors

−Σ∃ XX

Def.

.g ]|)([| YXXY XYgE HH ∈∈ allfor

[ ]]|)(),([Cov, |
1 XYgYfEgf XYXXYXXYXYY =ΣΣΣ−Σ −

XYXXYXYYXYY ΣΣΣ−Σ≡Σ −1
| :  conditional covariance operator

( )bVVVVaxXYbYa XYXXYXYY
TTT

XY
1

| ]|,[Cov −−==c.f. For Gaussian

XYYUYY || Σ≥Σ ≥ : in the sense of 
self-adjoint operators
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RKHS and Conditional Independence

! Conditional independence

! Minimization of conditional covariance operator

– Evaluation
• Operator norm  -- maximum eigenvalue.
• Trace norm  -- sum of eigenvalues
• Determinant -- product of eigenvalues

Theorem
X = (U,V) and Y are random vectors. 
HX , HU , HY : RKHS with Gaussian kernel kX, kU, kY, resp.

.g ]|)([  ]|)([ || YUUYXXY UYgEXYgE HHH ∈∈∈ allforand

XYYUYYUVY ||| Σ=Σ⇔⊥

UYYXBUB T |:
min Σ
=

B  gives the effective subspace
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Kernel Dimension Reduction
! Estimation of conditional covariance operator

(X(1), Y(1)), ... , (X(n), Y(n))  :  i.i.d. sample from the true joint probability.
The space is restricted in the linear hull of 

and 

Replace ΣYY|U by n x n matrix

}1|),({ )( niXk i ≤≤⋅
}1|),({ )( niYk i ≤≤⋅

UYUUYUYYUYY ΣΣΣ−Σ≡Σ − ˆˆˆˆˆ 1
|

YUUYnYYYYnUUU GGIGIG =Σ+=Σ+=Σ ˆ,)(ˆ,)(ˆ 22 εε

where

( ) )(),()( 1)()(1 T
nnnn

ji
U

T
nnnnU IUUkIG 1111 −−=

( ) )(),()( 1)()(1 T
nnnn

ji
Y

T
nnnnY IYYkIG 1111 −−=

ε : regularization coefficient

reproducing property and empirical average



14

Kernel Dimension Reduction

! Kernel dimension reduction (KDR)

Kernel Dimension Reduction (KDR) = minimization of KGV
Minimization method – gradient-based method.

⇔

⇔

UYUUYUYYUYY ΣΣΣ−Σ≡Σ − ˆˆˆˆˆ 1
| U = BTXmin

B

min
B

[ ]2/112/1 ˆˆˆˆˆdet −−− ΣΣΣΣΣ− YYUYUUYUYYnI

UUYY

YUYU

ΣΣ
Σ

ˆdetˆdet

ˆdet ]][[









ΣΣ
ΣΣ

=Σ
UUUY

YUYY
YUYU ˆˆ

ˆˆ
ˆ ]][[wheremin

B

Kernel generalized variance (KGV, Bach & Jordan 2002)
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Kernel Dimension Reduction

! Extension of Kernel ICA
– Kernel ICA (Bach & Jordan 02):  kernel method for independence.

" KDR:  kernel method for conditional independence.  

! Wide applicability of KDR
– Semiparametric method:  no assumptions on p(Y|X) . 
– KDR needs no strong assumption on the distribution of X, Y and 

dimensionality of Y. 
c.f.  other method;  SIR, pHd, CCA, PLS, etc.

! Computational cost
– Multiplication of n x n matrices is computationally hard.

" Incomplete Cholesky decomposition
– Local minimum  " annealing is used in gradient method.  
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Experiments
! Synthesized data 

– Data

– Results
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Experiments

! Wine data 
– Data 

13 dim. 178 data.
3 classes
2 dim. projection
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Experiments

! Classification accuracy
– Purpose:  

to see how much information on Y is maintained in the 
low-dimensional subspace of X. 

– Test classification accuracy of Support Vector Machine after 
reducing dimensionality.

– Data sets for binary classification from UCI repository.

– Comparison with pHd.  
Many methods are NOT applicable for binary classification tasks.
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Experiments
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Experiments
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Experiments
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Extension to Variable Selection
! Variable selection by KGV

– Select subset 
– Principle 

– KGV gives an objective function for variable selection.

– Problem:  combinatorial explosion
• mCd evaluations are needed. 
• Calculation of all the combinations is possible only for small 

m and d.  

),...,(
1 dii XX from {X1, ..., Xm}.

XYYUYYUVY ||| Σ=Σ⇔⊥

min
U UUYY

YUYU

ΣΣ
Σ

ˆdetˆdet

ˆdet ]][[ min is taken over subsets 
),...,(

1 dii XXU = mii d ≤<<≤ L11  where
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Experiments of Variable Selection
! Small data set

– Boston Housing:   
X :13 dim.,  
Y = house price,  
506 data.

– 4 variables are selected.
13C4 = 715. 
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Variable Selection for Large Data Sets
! Computational issue

– Combinatorial explosion
If m and d are large, e.g. m=1000, d=20, evaluation of all the 
subsets is intractable.  

! Efficient optimization
– Greedy algorithm

1. Start from one variable.
2. For already chosen t variables  ,  

evaluate KGV of                 for all j, and select the best one. 
3. Repeat this to d variables.  

– Random optimization
Genetic algorithm

},...,{
1 tiit XXS =

}{ jt XS U
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Application: Gene Selection
! AML/ALL classification (Golub et al. 1999)

– Microarray data:  6817 dim.  38 data.
– Class label: 

AML (acute myeloid leukemia) / ALL (acute lymphoblastic
leukemia). 

– Golub et al (1999 Science) show 50 effective genes using nearest 
neighborhood analysis. 

! Results
– 50 genes are selected by the kernel method and compared with 

previous works. 
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Application: Gene Selection
Kernel

1 Leukotriene C4 synthase (LTC4S) O O O
2 Zyxin O O O O
3 FAH Fumarylacetoacetate O O O
4 LYN V-yes-1 Yamaguchi sarcoma O O O O
5 LEPR Leptin receptor O O O
6 CD33 CD33 antigen (differentiati O O O O
7 Liver mRNA for interferon-gamma O
8 "PRG1 Proteoglycan 1, secretory O O
9 GB DEF = Homeodomain protein Hox O
10 DF D component of complement (ad O O O O
11 INTERLEUKIN-8 PRECURSOR         O O O
12 INDUCED MYELOID LEUKEMIA O O
13 "PEPTIDYL-PROLYL CIS-TRANS O O
14 Phosphotyrosine independent liga O O
15 ATP6C Vacuolar H+ ATPase proton  O
16 CST3 Cystatin C (amyloid angiopa O O O O O
17 Interleukin 8 (IL8) gene        O O O O
18 CTSD Cathepsin D (lysosomal aspa O O
19 "ITGAX Integrin, alpha X (antige O O
20 "LGALS3 Lectin, galactoside-bind O O
21 Epb72 gene exon 1                O O
22 MAJOR HISTOCOMPATIBILITY O
23 LYZ Lysozyme O O
24 Azurocidin gene                 O O
25 "PFC Properdin P factor, complem O O
26 Lysophospholipase homolog (HU-K5 
27 PPGB Protective protein for beta O O
28 "Catalase (EC 1.11.1.6) 5'flank  O
29 FTH1 Ferritin heavy chain       O
30 "CD36 CD36 antigen (collagen typ O
31 EUKARYOTIC PEPTIDE CHAIN 
32 GB DEF = CD36 gene exon 15       
33 CSF1 Colony-stimulating factor 1 
34 CA2 Carbonic anhydrase II        O
35 Hepatocyte growth factor-like pr 
36 MPO Myeloperoxidase O O
37 "CHRNA7 Cholinergic receptor, ni O
38 AFFX-HUMTFRR/M11507_M_at 
39 "C1NH Complement component 1 inh
40 "GB DEF = Glycophorin Sta (type 
41 GYPE Glycophorin E              
42 AFFX-HUMTFRR/M11507_3_at 
43 Metabotropic glutamate receptor 
44 "GB DEF = Neutrophil elastase ge O
45 "ELA2 Elastatse 2, neutrophil"   O O O
46 GB DEF = Kazal-type serine prote
47 LCAT Lecithin-cholesterol acyltr
48 "ALDH2 Aldehyde dehydrogenase 2, 
49 ANX8 Annexin VIII               
50 "PRSS3 Protease, serine, 3 (tryp

Golub99 Lee03 Szabo02 Li02 Fuj

#agree/#selected      25/50     10/28     4/9        8/10     29/50
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Summary
! Kernel method for dimension reduction in regression

– Dimension reduction for regression = conditional independence.
– Conditional covariance operators gives the criterion for the 

conditional independence. 

! Kernel dimension reduction / variable selection
– have wide applicability to dimension reduction / variable selection. 

c.f. other methods have some restrictions.  
– find effective subspaces / variables in practical problems. 

! Future/ongoing studies
– Theoretical analysis of the estimator:  consistency etc. 
– How to choose the number of dimensions.
– More efficient optimization techniques for variable selection. 
– Mixture of effective subspaces.
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