## Dimension Reduction for Regression with Reproducing Kernels

#### Kenji Fukumizu Institute of Statistical Mathematics, Japan Visiting UC Berkeley

Statistical Colloquium. March 18, 2003

Joint work with Michael Jordan and Francis Bach in Berkeley

# Outline

#### Introduction

- Dimension reduction for regression
- Conditional Independence and RKHS
  - Dimension reduction and conditional independence
  - Reproducing kernel Hilbert space
  - Conditional covariance operator
- Kernel Dimension Reduction for Regression
  - Algorithm and experimental results
- Extension to Variable Selection

#### Summary

# Introduction

## Dimension reduction for regression

- Regression

 $Y \sim f(X,Z)$  or  $p(Y \mid X)$ 

*Y*: response variable, *X*: *m*-dim. explanatory variable, *Z*: noise

– Goal: Find effective subspace defined by *B*.

 $\tilde{p}(Y | B^T X) = p(Y | X)$  B:  $m \times d$  matrix d is fixed.

- Effective subspace to explain *Y*.
- Compact representation of the statistical relation.
  - data analysis : what determines *Y* ?.
  - preprocessing of regression:

accuracy of regression, computational efficiency.

### Introduction

– Example





$$Y = \frac{2}{1 + \exp(-2X_1)} + N(0; 0.1^2)$$



## Introduction

## Semi-parametric problem

## $p_{Y|X}(Y \mid X) = \widetilde{p}(Y \mid B_0^T X)$ $B_0: m \times d$ matrix

i.i.d. sample  $(X^{(1)}, Y^{(1)}), ..., (X^{(n)}, Y^{(n)})$  given.

Find the subspace  $B_0$  without knowing anything about  $p_{Y|X}$  (or  $\tilde{p}$ ).

There is the infinite degree of freedom on unestimated *p*.

 $\rightarrow$  Semiparametric problem.

## Approach

Assume

- Formulate the problem by conditional independence.
- Use reproducing kernel Hilbert spaces as functional spaces for the infinite degree of freedom.

## **Existing Methods**

Sliced Inverse Regression (SIR, Li 1991)

- PCA of  $E[X|Y] \rightarrow$  use slice of Y.
- Semiparametric method: no assumption on p(Y|X).
- Elliptic assumption on the distribution of *X* is necessary.
- Principle Hessian Direction (pHd, Li 1992)
  - Average Hessian  $\Sigma_{yxx} \equiv E[(Y \overline{Y})(X \overline{X})(X \overline{X})^T]$  is used.
  - If *X* is Gaussian, eigenvectors gives the effective directions.
  - Gaussian assumption on *X*. *Y* must be one-dimensional.
- Projection pursuit approach (e.g. Friedman et al. 1981)
  - Additive model is used for regressor.
- Canonical Correlation Analysis (CCA) / Partial Least Square (PLS)
   Linear assumption on the regression.

# **Conditional Independence**

Dimension reduction and conditional independence

 $(U, V)=(B^TX, C^TX)$  for  $(B, C) \in O(m)$ 

*B* gives the effective subspace  $\Leftrightarrow p_{Y|X}(y|x) = p_{Y|U}(y|B^Tx)$ 

 $\Leftrightarrow p_{Y|U,V}(y|u,v) = p_{Y|U}(y|u) \text{ for all } y,u,v$ 

 $\Leftrightarrow$  Conditional independence  $Y \perp V \mid U$ 

Characterization of conditional independence

Reproducing kernel Hilbert space (RKHS)



## **Reproducing Kernel Hilbert Space**

## Definition

 $\Omega$ : set. *H*: Hilbert space  $\subset \{f : \Omega \rightarrow \mathbf{R}\}$ 

H: reproducing kernel Hilbert space (RKHS)

$$\begin{array}{l} \Leftrightarrow \\ \overrightarrow{def} & \exists k : \Omega \times \Omega \to \mathbf{R} \quad \text{symmetric function (reproducing kernel) s.t.} \\ & 1) \quad k(\cdot, x) \in \mathcal{H} \quad \text{for all} \quad x \in \Omega. \\ & 2) \quad \left\langle k(\cdot, x), f \right\rangle_{\mathcal{H}} = f(x) \quad \text{for } \forall f \in \mathcal{H}, \ x \in \Omega. \text{ reproducing property} \end{array}$$

Reproducing property makes computation easy and feasible.

e.g.) For 
$$f = \sum_{i=1}^{n} a_i k(\cdot, X_i), g = \sum_{j=1}^{m} b_j k(\cdot, X_j)$$
  
 $\langle f, g \rangle_H = \sum_{ij} a_i b_j k(X_i, X_j)$ 

- Example: Gaussian kernel  $k: \mathbf{R}^m \times \mathbf{R}^m \to \mathbf{R}, \quad k(x, y) = \exp(-\|x - y\|^2 / \sigma^2)$ There is a RKHS on  $\mathbf{R}^m$  with reproducing kernel k.

## **RKHS and Independence**

#### Independence and characteristic functions

Random variables X and Y are independent

$$\Leftrightarrow E_{XY}\left[e^{\sqrt{-1}\omega^{^{T}}X}e^{\sqrt{-1}\eta^{^{T}}Y}\right] = E_{X}\left[e^{\sqrt{-1}\omega^{^{T}}X}\right]E_{Y}\left[e^{\sqrt{-1}\eta^{^{T}}Y}\right] \quad \text{for all } \omega \text{ and } \eta.$$

 $e^{\sqrt{-1}\omega^{T}x}$  and  $e^{\sqrt{-1}\eta^{T}y}$  work as test functions which account for the infinite degree of freedom (*L*<sup>2</sup>).

## RKHS characterization

 $H_X$  and  $H_Y$  are RKHS on  $\Omega_X$  and  $\Omega_Y$ , respectively. Random variables  $X \in \Omega_X$  and  $Y \in \Omega_Y$  are independent  $\Leftrightarrow E_{XY}[f(X)g(Y)] = E_X[f(X)]E_Y[g(Y)]$  for all  $f \in H_X$ ,  $g \in H_Y$ 

This is true if  $H_X$  and  $H_Y$  are RKHS for Gaussian kernels. (Bach & Jordan 2002)

## **Cross-covariance Operator**

### Definition

*X* and *Y*: random variable on  $\Omega_X$  and  $\Omega_Y$ , respectively.  $H_X$  and  $H_Y$ : RKHS on  $\Omega_X$  and  $\Omega_Y$ , respectively, with bounded kernels. We can define a bounded operator  $\Sigma_{YX} : H_X \to H_Y$  by  $\langle g, \Sigma_{YX} f \rangle_{H_Y} = E_{XY}[f(X)g(Y)] - E_X[f(X)]E_Y[g(Y)] \quad (= \operatorname{Cov}[f(X), g(Y)])$ for all  $f \in H_X$ ,  $g \in H_Y$ 

 $\Sigma_{YX}$  is called cross-covariance operator.

#### Cross-covariance operator and Independence Theorem

 $H_X$  and  $H_Y$ : RKHS with Gaussian kernel.

*X* and *Y* are independent  $\Leftrightarrow \Sigma_{YX} = O$ 

## **RKHS and Conditional Independence**

## Conditional covariance

*X* and *Y* are random vectors.  $H_X$ ,  $H_Y$ : RKHS with kernel  $k_X$ ,  $k_Y$ , resp. Assumption:  $\exists \Sigma_{XX}^{-1}$ ,  $E_{Y|X}[g(Y)|X] \in H_X$  for all  $g \in H_Y$ .

$$\langle f, \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} g \rangle = E_X \Big[ \operatorname{Cov}_{Y|X} [f(Y), g(Y) | X] \Big]$$

Def.  $\Sigma_{YY|X} \equiv \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$ : conditional covariance operator

*c.f.* For Gaussian  $\operatorname{Cov}_{Y|X}[a^T Y, b^T Y | X = x] = a^T (V_{YY} - V_{YX} V_{XX}^{-1} V_{XY}) b$ 

- Monotonicity of conditional covariance operators

*Y*, X = (U,V) : random vectors

$$\boldsymbol{\Sigma}_{\boldsymbol{YY}|\boldsymbol{U}} \geq \boldsymbol{\Sigma}_{\boldsymbol{YY}|\boldsymbol{X}}$$

 $\geq$  : in the sense of self-adjoint operators

## **RKHS and Conditional Independence**

### Conditional independence

heorem  

$$X = (U,V)$$
 and Y are random vectors.  
 $H_X , H_U , H_Y :$  RKHS with Gaussian kernel  $k_X , k_U , k_Y ,$  resp.  
 $E_{Y|X}[g(Y)|X] \in H_X$  and  $E_{Y|U}[g(Y)|U] \in H_U$  for all  $g \in H_Y$ .  
 $\longrightarrow \qquad Y \perp V | U \iff \Sigma_{YY|U} = \Sigma_{YY|X}$ 

#### Minimization of conditional covariance operator

 $\min_{B: U=B^T X} \Sigma_{YY|U} \implies B \text{ gives the effective subspace}$ 

#### - Evaluation

Т

- Operator norm -- maximum eigenvalue.
- Trace norm -- sum of eigenvalues
- Determinant -- product of eigenvalues

# **Kernel Dimension Reduction**

### Estimation of conditional covariance operator

 $(X^{(1)}, Y^{(1)}), \dots, (X^{(n)}, Y^{(n)})$ : i.i.d. sample from the true joint probability. The space is restricted in the linear hull of  $\{k(\cdot, X^{(i)}) | 1 \le i \le n\}$ and  $\{k(\cdot, Y^{(i)}) | 1 \le i \le n\}$ 

Replace  $\Sigma_{YY|U}$  by  $n \ge n$  matrix

$$\hat{\Sigma}_{YY|U} \equiv \hat{\Sigma}_{YY} - \hat{\Sigma}_{YU} \hat{\Sigma}_{UU}^{-1} \hat{\Sigma}_{UY}$$

where

$$\hat{\Sigma}_{UU} = (G_U + \varepsilon I_n)^2, \quad \hat{\Sigma}_{YY} = (G_{YY} + \varepsilon I_n)^2, \quad \hat{\Sigma}_{UY} = G_U G_Y$$

 $\varepsilon$ : regularization coefficient

$$G_{U} = (I_{n} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T}) \left( k_{U} (U^{(i)}, U^{(j)}) \right) (I_{n} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T})$$
  

$$G_{Y} = (I_{n} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T}) \left( k_{Y} (Y^{(i)}, Y^{(j)}) \right) (I_{n} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T})$$

reproducing property and empirical average

#### **Kernel Dimension Reduction**

#### Kernel dimension reduction (KDR)

$$\min_{B} \quad \hat{\Sigma}_{YY|U} \equiv \hat{\Sigma}_{YY} - \hat{\Sigma}_{YU} \hat{\Sigma}_{UU}^{-1} \hat{\Sigma}_{UY} \qquad U = B^{T}X$$

$$\iff \min_{B} \quad \det \left[ I_{n} - \hat{\Sigma}_{YY}^{-1/2} \hat{\Sigma}_{YU} \hat{\Sigma}_{UU}^{-1} \hat{\Sigma}_{UY} \hat{\Sigma}_{YY}^{-1/2} \right]$$

$$\iff \min_{B} \quad \frac{\det \hat{\Sigma}_{[YU][YU]}}{\det \hat{\Sigma}_{YY} \det \hat{\Sigma}_{UU}} \qquad \text{where} \quad \hat{\Sigma}_{[YU][YU]} = \begin{pmatrix} \hat{\Sigma}_{YY} & \hat{\Sigma}_{YU} \\ \hat{\Sigma}_{UY} & \hat{\Sigma}_{UU} \end{pmatrix}$$

Kernel generalized variance (KGV, Bach & Jordan 2002)

Kernel Dimension Reduction (KDR) = minimization of KGV Minimization method – gradient-based method.

## **Kernel Dimension Reduction**

## Extension of Kernel ICA

Kernel ICA (Bach & Jordan 02): kernel method for independence.
 → KDR: kernel method for conditional independence.

## Wide applicability of KDR

- Semiparametric method: no assumptions on p(Y|X).
- KDR needs no strong assumption on the distribution of X, Y and dimensionality of Y.
- c.f. other method; SIR, pHd, CCA, PLS, etc.

## Computational cost

- Multiplication of  $n \ge n$  matrices is computationally hard.  $\rightarrow$  Incomplete Cholesky decomposition
- Local minimum  $\rightarrow$  annealing is used in gradient method.



#### Wine data

- Data
  - 13 dim. 178 data. 3 classes
  - 2 dim. projection









-20

### Classification accuracy

– Purpose:

to see how much information on *Y* is maintained in the low-dimensional subspace of *X*.

- Test classification accuracy of Support Vector Machine after reducing dimensionality.
- Data sets for binary classification from UCI repository.
- Comparison with pHd.
   Many methods are NOT applicable for binary classification tasks.

#### **Breast-cancer-Wisconsin**

X: 30 dim. # training data=200 # test data=369



#### Heart-disease

X: 13 dim. # training data=149, # test data=148



#### Ionosphere

X: 34 dim. # training data=151 # test data=200



## **Extension to Variable Selection**

- Variable selection by KGV
  - Select subset  $(X_{i_1}, ..., X_{i_d})$  from  $\{X_1, ..., X_m\}$ .
  - Principle

$$Y \perp V \mid U \quad \Leftrightarrow \quad \Sigma_{YY\mid U} = \Sigma_{YY\mid X}$$

- KGV gives an objective function for variable selection.

$$\min_{U} \frac{\det \hat{\Sigma}_{[YU][YU]}}{\det \hat{\Sigma}_{YY} \det \hat{\Sigma}_{UU}}$$

min is taken over subsets  $U = (X_{i_1}, ..., X_{i_d})$  where  $1 \le i_1 < \cdots < i_d \le m$ 

- Problem: combinatorial explosion
  - ${}_{m}C_{d}$  evaluations are needed.
  - Calculation of all the combinations is possible only for small *m* and *d*.

## **Experiments of Variable Selection**

## Small data set

- Boston Housing:
  X :13 dim.,
  Y = house price,
  506 data.
- 4 variables are selected.  ${}_{13}C_4 = 715.$

ACE: Breiman & Friedman (1985)

|         | 1st | 2nd | 3rd | ACE |
|---------|-----|-----|-----|-----|
| CRIM    |     | 0   |     |     |
| ZN      |     |     |     |     |
| INDUS   |     |     |     |     |
| CHAS    |     |     |     |     |
| NOX     |     |     |     |     |
| RM      | 0   | 0   | 0   | 0   |
| AGE     |     |     |     |     |
| DIS     |     |     | 0   |     |
| RAD     |     |     |     |     |
| TAX     | 0   |     | 0   | 0   |
| PTRATIO | 0   | 0   |     | 0   |
| В       |     |     |     |     |
| LSTAT   | 0   | 0   | 0   | 0   |

## Variable Selection for Large Data Sets

## Computational issue

Combinatorial explosion
 If *m* and *d* are large, e.g. *m*=1000, *d*=20, evaluation of all the subsets is intractable.

## Efficient optimization

- Greedy algorithm
  - 1. Start from one variable.
  - 2. For already chosen *t* variables  $S_t = \{X_{i_1}, ..., X_{i_t}\}$ , evaluate KGV of  $S_t \cup \{X_j\}$  for all *j*, and select the best one.
  - 3. Repeat this to *d* variables.
- Random optimization
   Genetic algorithm

# **Application: Gene Selection**

## AML/ALL classification (Golub et al. 1999)

- Microarray data: 6817 dim. 38 data.
- Class label:

AML (acute myeloid leukemia) / ALL (acute lymphoblastic leukemia).

 Golub et al (1999 Science) show 50 effective genes using nearest neighborhood analysis.

#### Results

 50 genes are selected by the kernel method and compared with previous works.

#### **Application: Gene Selection**

| Kernel                              | Golub99 | Lee03 | Szabo02 | Li02 | Fuj   |
|-------------------------------------|---------|-------|---------|------|-------|
| 1 Leukotriene C4 synthase (LTC4S)   | 0       |       |         | 0    | 0     |
| 2 Zyxin                             | Ο       | 0     |         | 0    | 0     |
| 3 FAH Fumarylacetoacetate           | 0       |       |         | 0    | 0     |
| 4 LYN V-ves-1 Yamaguchi sarcoma     | 0       | 0     |         | 0    | 0     |
| 5 LEPR Leptin receptor              | 0       |       |         | Ó    | 0     |
| 6 CD33 CD33 antigen (differentiati  | Ο       | 0     |         | 0    | 0     |
| 7 Liver mRNA for interferon-gamma   |         |       |         |      | 0     |
| 8 "PRG1 Proteoglycan 1, secretory   | 0       |       |         |      | 0     |
| 9 GB DEF = Homeodomain protein Hox  | 0       |       |         |      |       |
| 10 DF D component of complement (ad | Ο       | 0     | 0       |      | Ο     |
| 11 INTERLEUKIN-8 PRECURSOR          | 0       | 0     |         |      | 0     |
| 12 INDUCED MYELOID LEUKEMIA         | 0       |       |         |      | 0     |
| 13 "PEPTIDYL-PROLYL CIS-TRANS       | Ο       |       |         |      | Ο     |
| 14 Phosphotyrosine independent liga | Ο       |       |         |      | 0     |
| 15 ATP6C Vacuolar H+ ATPase proton  | 0       |       |         |      |       |
| 16 CST3 Cystatin C (amyloid angiopa | 0       | 0     | 0       | 0    | 0     |
| 17 Interleukin 8 (IL8) gene         | Ο       | 0     | 0       |      | 0     |
| 18 CTSD Cathepsin D (lysosomal aspa | 0       |       |         |      | 0     |
| 19 "ITGAX Integrin, alpha X (antige | 0       |       |         |      | 0     |
| 20 "LGALS3 Lectin, galactoside-bind | 0       |       |         |      | 0     |
| 21 Epb72 gene exon 1                | 0       |       |         |      | 0     |
| 22 MAJOR HISTOCOMPATIBILITY         | 0       |       |         |      |       |
| 23 LYZ Lysozyme                     | 0       |       |         |      | 0     |
| 24 Azurocidin gene                  | 0       |       |         |      | 0     |
| 25 "PFC Properdin P factor, complem | ο       |       |         |      | Ο     |
| 26 Lysophospholipase homolog (HU-K5 |         |       |         |      |       |
| 27 PPGB Protective protein for beta |         | 0     |         |      | 0     |
| 28 "Catalase (EC 1.11.1.6) 5'flank  | 0       |       |         |      |       |
| 29 FTH1 Ferritin heavy chain        |         |       |         |      | 0     |
| 30 "CD36 CD36 antigen (collagen typ |         |       |         |      | 0     |
| 31 EUKARYOTIC PEPTIDE CHAIN         |         |       |         |      |       |
| 32 GB DEF = CD36 gene exon 15       |         |       |         |      |       |
| 33 CSF1 Colony-stimulating factor 1 |         |       |         |      |       |
| 34 CA2 Carbonic anhydrase II        |         |       |         |      | 0     |
| 35 Hepatocyte growth factor-like pr |         |       |         |      |       |
| 36 MPO Myeloperoxidase              |         | 0     |         |      | 0     |
| 37 "CHRNA7 Cholinergic receptor, ni |         |       |         |      | 0     |
| 38 AFFX-HUMTFRR/M11507_M_at         |         |       |         |      |       |
| 39 "C1NH Complement component 1 inh |         |       |         |      |       |
| 40 "GB DEF = Glycophorin Sta (type  |         |       |         |      |       |
| 41 GYPE Glycophorin E               |         |       |         |      |       |
| 42 AFFX-HUMTFRR/M11507_3_at         |         |       |         |      |       |
| 43 Metabotropic glutamate receptor  |         |       | _       |      |       |
| 44 "GB DEF = Neutrophil elastase ge |         |       | 0       |      | -     |
| 45 "ELA2 Elastatse 2, neutrophil"   |         | 0     |         | 0    | 0     |
| 46 GB DEF = Kazal-type serine prote |         |       |         |      |       |
| 47 LCAT Lecithin-cholesterol acyltr |         |       |         |      |       |
| 45 "ALDHZ Aldenyde denydrogenase Z, |         |       |         |      |       |
| 45 AINAS ANNEXIN VIII               |         |       |         |      |       |
| ou PROSS Protease, serine, 3 (tryp  |         |       |         |      |       |
| #agree/#selected                    | 25/50   | 10/28 | 4/9     | 8/10 | 29/50 |

# Summary

#### Kernel method for dimension reduction in regression

- Dimension reduction for regression = conditional independence.
- Conditional covariance operators gives the criterion for the conditional independence.
- Kernel dimension reduction / variable selection
  - have wide applicability to dimension reduction / variable selection.
     *c.f.* other methods have some restrictions.
  - find effective subspaces / variables in practical problems.

#### Future/ongoing studies

- Theoretical analysis of the estimator: consistency etc.
- How to choose the number of dimensions.
- More efficient optimization techniques for variable selection.
- Mixture of effective subspaces.