Dimension Reduction for Regression with Reproducing Kernels

Kenji Fukumizu
Institute of Statistical Mathematics, Japan Visiting UC Berkeley

Statistical Colloquium. March 18, 2003

Joint work with Michael Jordan and Francis Bach in Berkeley

Outline

- Introduction
- Dimension reduction for regression

■ Conditional Independence and RKHS

- Dimension reduction and conditional independence
- Reproducing kernel Hilbert space
- Conditional covariance operator

■ Kernel Dimension Reduction for Regression

- Algorithm and experimental results
- Extension to Variable Selection
- Summary

Introduction

■ Dimension reduction for regression

- Regression

$$
Y \sim f(X, Z) \quad \text { or } \quad p(Y \mid X)
$$

Y : response variable, $\quad X$: m-dim. explanatory variable, $\quad Z$: noise

- Goal: Find effective subspace defined by B.

$$
\tilde{p}\left(Y \mid B^{T} X\right)=p(Y \mid X) \quad B: m \times d \text { matrix } \quad d \text { is fixed. }
$$

- Effective subspace to explain Y.
- Compact representation of the statistical relation.
- data analysis : what determines Y ?.
- preprocessing of regression:
accuracy of regression, computational efficiency.

Introduction

- Example

$$
Y=\frac{2}{1+\exp \left(-2 X_{1}\right)}+N\left(0 ; 0.1^{2}\right)
$$

Introduction

■ Semi-parametric problem

Assume

$$
p_{Y \mid X}(Y \mid X)=\widetilde{p}\left(Y \mid B_{0}^{T} X\right) \quad B_{0}: m \times d \quad \text { matrix }
$$

i.i.d. sample $\left(X^{(1)}, Y^{(1)}\right), \ldots,\left(X^{(n)}, Y^{(n)}\right)$ given.

Find the subspace B_{0} without knowing anything about $p_{Y X X}$ (or \widetilde{p}).
There is the infinite degree of freedom on unestimated p.
\rightarrow Semiparametric problem.

■ Approach

- Formulate the problem by conditional independence.
- Use reproducing kernel Hilbert spaces as functional spaces for the infinite degree of freedom.

Existing Methods

■ Sliced Inverse Regression (SIR, Li 1991)

- PCA of $\mathrm{E}[X \mid Y] \rightarrow$ use slice of Y.
- Semiparametric method: no assumption on $p(Y \mid X)$.
- Elliptic assumption on the distribution of X is necessary.

■ Principle Hessian Direction (pHd, Li 1992)

- Average Hessian $\Sigma_{y x x} \equiv E\left[(Y-\bar{Y})(X-\bar{X})(X-\bar{X})^{T}\right] \quad$ is used.
- If X is Gaussian, eigenvectors gives the effective directions.
- Gaussian assumption on X. Y must be one-dimensional.

■ Projection pursuit approach (e.g. Friedman et al. 1981)

- Additive model is used for regressor.

■ Canonical Correlation Analysis (CCA) / Partial Least Square (PLS)

- Linear assumption on the regression.

Conditional Independence

\square Dimension reduction and conditional independence
$(U, V)=\left(B^{T} X, C^{T} X\right)$ for $(B, C) \in O(m)$
B gives the effective subspace $\quad \Leftrightarrow \quad p_{Y \mid X}(y \mid x)=p_{Y \mid U}\left(y \mid B^{T} x\right)$

$$
\begin{aligned}
& \Leftrightarrow \quad p_{Y \mid U, V}(y \mid u, v)=p_{Y \mid U}(y \mid u) \text { for all } y, u, v \\
& \Leftrightarrow \quad \text { Conditional independence } \quad Y \perp V \mid U
\end{aligned}
$$

■ Characterization of conditional independence

\square Reproducing kernel Hilbert space (RKHS)

Reproducing Kernel Hilbert Space

- Definition

Ω : set. H: Hilbert space $\subset\{f: \Omega \rightarrow \mathbf{R}\}$
H: reproducing kernel Hilbert space (RKHS)
$\stackrel{\text { def }}{ } \exists k: \Omega \times \Omega \rightarrow \mathbf{R}$ symmetric function (reproducing kernel) s.t.

1) $k(\cdot, x) \in \mathrm{H}$ for all $x \in \Omega$.
2) $\langle k(\cdot, x), f\rangle_{\mathrm{H}}=f(x) \quad$ for $\forall f \in \mathrm{H}, x \in \Omega$. reproducing property

Reproducing property makes computation easy and feasible.

$$
\begin{aligned}
& \text { e.g.) For } f=\sum_{i=1}^{n} a_{i} k\left(\cdot, X_{i}\right), g=\sum_{j=1}^{m} b_{j} k\left(\cdot, X_{j}\right) \\
& \langle f, g\rangle_{\mathrm{H}}=\sum_{i j} a_{i} b_{j} k\left(X_{i}, X_{j}\right)
\end{aligned}
$$

- Example: Gaussian kernel

$$
k: \mathbf{R}^{m} \times \mathbf{R}^{m} \rightarrow \mathbf{R}, \quad k(x, y)=\exp \left(-\|x-y\|^{2} / \sigma^{2}\right)
$$

\Rightarrow There is a RKHS on \mathbf{R}^{m} with reproducing kernel k.

RKHS and Independence

■ Independence and characteristic functions

Random variables X and Y are independent

$$
\Leftrightarrow E_{X Y}\left\lfloor e^{\sqrt{-1} \omega^{T} X} e^{\sqrt{-1} \eta^{T} Y}\right\rfloor=E_{X}\left\lfloor e^{\sqrt{-1} \omega^{T} X}\right\rfloor E_{Y}\left\lfloor e^{\sqrt{-1} \eta^{T} Y}\right\rfloor \quad \text { for all } \omega \text { and } \eta
$$

$e^{\sqrt{-1} \omega^{\tau} x}$ and $e^{\sqrt{-1} \eta^{T} y}$ work as test functions which account for the infinite degree of freedom $\left(L^{2}\right)$.

\square RKHS characterization

H_{X} and H_{Y} are RKHS on Ω_{X} and Ω_{Y}, respectively.
Random variables $X \in \Omega_{X}$ and $Y \in \Omega_{Y}$ are independent

$$
\Leftrightarrow \quad E_{X Y}[f(X) g(Y)]=E_{X}[f(X)] E_{Y}[g(Y)] \quad \text { for all } f \in \mathrm{H}_{X}, g \in \mathrm{H}_{Y}
$$

This is true if H_{X} and H_{Y} are RKHS for Gaussian kernels.
(Bach \& Jordan 2002)

Cross-covariance Operator

- Definition

X and Y : random variable on Ω_{X} and Ω_{Y}, respectively.
H_{X} and H_{Y} : RKHS on Ω_{X} and Ω_{Y}, respectively, with bounded kernels.
We can define a bounded operator $\Sigma_{Y X}: \mathrm{H}_{X} \rightarrow \mathrm{H}_{Y}$ by

$$
\begin{array}{r}
\left\langle g, \Sigma_{Y X} f\right\rangle_{\mathrm{H}_{Y}}=E_{X Y}[f(X) g(Y)]-E_{X}[f(X)] E_{Y}[g(Y)](=\operatorname{Cov}[f(X), g(Y)]) \\
\text { for all } f \in \mathrm{H}_{X}, g \in \mathrm{H}_{Y}
\end{array}
$$

$\Sigma_{Y X}$ is called cross-covariance operator.
■ Cross-covariance operator and Independence
Theorem
H_{X} and H_{Y} : RKHS with Gaussian kernel.
X and Y are independent $\Leftrightarrow \Sigma_{Y X}=O$

RKHS and Conditional Independence

- Conditional covariance
X and Y are random vectors. $\mathrm{H}_{X}, \mathrm{H}_{Y}$: RKHS with kernel k_{X}, k_{Y}, resp.
Assumption: $\exists \Sigma_{X X}{ }^{-1}, E_{Y \mid X}[g(Y) \mid X] \in \mathrm{H}_{X}$ for all $\mathrm{g} \in \mathrm{H}_{Y}$.

$$
\left\langle f, \Sigma_{Y Y}-\Sigma_{Y X} \Sigma_{X X}^{-1} \Sigma_{X Y} g\right\rangle=E_{X}\left[\operatorname{Cov}_{Y \mid X}[f(Y), g(Y) \mid X]\right]
$$

Def. $\quad \Sigma_{Y Y \mid X} \equiv \Sigma_{Y Y}-\Sigma_{Y X} \Sigma_{X X}{ }^{-1} \Sigma_{X Y}$: conditional covariance operator
c.f. For Gaussian $\operatorname{Cov}_{Y \mid X}\left[a^{T} Y, b^{T} Y \mid X=x\right]=a^{T}\left(V_{Y Y}-V_{Y X} V_{X X}{ }^{-1} V_{X Y}\right) b$

- Monotonicity of conditional covariance operators
$Y, X=(U, V)$: random vectors

$$
\Sigma_{Y Y \mid U} \geq \Sigma_{Y Y \mid X}
$$

\geq : in the sense of self-adjoint operators

RKHS and Conditional Independence

■ Conditional independence

Theorem

$X=(U, V)$ and Y are random vectors. $\mathrm{H}_{X}, \mathrm{H}_{U}, \mathrm{H}_{Y}$: RKHS with Gaussian kernel k_{X}, k_{U}, k_{Y}, resp. $E_{Y \mid X}[g(Y) \mid X] \in \mathrm{H}_{X}$ and $E_{Y \mid U}[g(Y) \mid U] \in \mathrm{H}_{U}$ for all $\mathrm{g} \in \mathrm{H}_{Y}$.

$$
\Rightarrow \quad Y \perp V \mid U \quad \Leftrightarrow \quad \Sigma_{Y Y \mid U}=\Sigma_{Y Y \mid X}
$$

■ Minimization of conditional covariance operator

$$
\min _{B: U=B^{T} X} \Sigma_{Y Y \mid U} \quad \square \quad B \text { gives the effective subspace }
$$

- Evaluation
- Operator norm -- maximum eigenvalue.
- Trace norm -- sum of eigenvalues
- Determinant -- product of eigenvalues

Kernel Dimension Reduction

■ Estimation of conditional covariance operator
$\left(X^{(1)}, Y^{(1)}\right), \ldots,\left(X^{(n)}, Y^{(n)}\right)$: i.i.d. sample from the true joint probability.
The space is restricted in the linear hull of $\left\{k\left(\cdot, X^{(i)}\right) \mid 1 \leq i \leq n\right\}$
and $\left\{k\left(\cdot, Y^{(i)}\right) \mid 1 \leq i \leq n\right\}$
Replace $\Sigma_{Y Y \mid U}$ by $n \times n$ matrix

$$
\hat{\Sigma}_{Y Y \mid U} \equiv \hat{\Sigma}_{Y Y}-\hat{\Sigma}_{Y U} \hat{\Sigma}_{U U}^{-1} \hat{\Sigma}_{U Y}
$$

where

$$
\begin{aligned}
& \hat{\Sigma}_{U U}=\left(G_{U}+\varepsilon I_{n}\right)^{2}, \quad \hat{\Sigma}_{Y Y}=\left(G_{Y Y}+\varepsilon I_{n}\right)^{2}, \quad \hat{\Sigma}_{U Y}=G_{U} G_{Y} \\
& \varepsilon: \text { regularization coefficient } \\
& G_{U}=\left(I_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}{ }^{T}\right)\left(k_{U}\left(U^{(i)}, U^{(j)}\right)\right)\left(I_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}{ }^{T}\right) \\
& G_{Y}=\left(I_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}{ }^{T}\right)\left(k_{Y}\left(Y^{(i)}, Y^{(j)}\right)\right)\left(I_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}{ }^{T}\right)
\end{aligned}
$$

reproducing property and empirical average

Kernel Dimension Reduction

- Kernel dimension reduction (KDR)

Kernel generalized variance (KGV, Bach \& Jordan 2002)

Kernel Dimension Reduction (KDR) = minimization of KGV
Minimization method - gradient-based method.

Kernel Dimension Reduction

- Extension of Kernel ICA

- Kernel ICA (Bach \& Jordan 02): kernel method for independence.
\rightarrow KDR: kernel method for conditional independence.
- Wide applicability of KDR
- Semiparametric method: no assumptions on $p(Y \mid X)$.
- KDR needs no strong assumption on the distribution of X, Y and dimensionality of Y.
c.f. other method; SIR, pHd, CCA, PLS, etc.
- Computational cost
- Multiplication of $n \times n$ matrices is computationally hard.
\rightarrow Incomplete Cholesky decomposition
- Local minimum \rightarrow annealing is used in gradient method.

Experiments

■ Synthesized data

- Data
$X: 2 \operatorname{dim}, Y: 1 \operatorname{dim}$ 100 data

$$
Y \sim 2 \exp \left(-X_{1}^{2}\right)+N\left(0 ; 0.1^{2}\right)
$$

- Results

	SIR	PHd	CCA	PLS	KDR
	x_{2}				
Angle (deg.)	-86.522	57.015	-10.416	-26.093	0.298

Experiments

- Wine data

- Data

13 dim. 178 data.
3 classes
2 dim. projection

Experiments

■ Classification accuracy

- Purpose:
to see how much information on Y is maintained in the low-dimensional subspace of X.
- Test classification accuracy of Support Vector Machine after reducing dimensionality.
- Data sets for binary classification from UCI repository.
- Comparison with pHd. Many methods are NOT applicable for binary classification tasks.

Experiments

Breast-cancer-Wisconsin

X: 30 dim .
\# training data=200
\# test data=369

Experiments

Heart-disease

X: 13 dim .
\# training data=149,
\# test data=148

Experiments

lonosphere

X: 34 dim.
\# training data=151
\# test data=200

Extension to Variable Selection

■ Variable selection by KGV

- Select subset $\left(X_{i_{1}}, \ldots, X_{i_{d}}\right)$ from $\left\{X_{1}, \ldots, X_{m}\right\}$.
- Principle

$$
Y \perp V \mid U \quad \Leftrightarrow \quad \Sigma_{Y Y \mid U}=\Sigma_{Y Y \mid X}
$$

- KGV gives an objective function for variable selection.

$$
\min _{U} \frac{\operatorname{det} \hat{\Sigma}_{[Y U][Y U]}}{\operatorname{det} \hat{\Sigma}_{Y Y} \operatorname{det} \hat{\Sigma}_{U U}} \quad \begin{aligned}
& \min \text { is taken over subsets } \\
& U=\left(X_{i_{1}}, \ldots, X_{i_{d}}\right) \text { where } 1 \leq i_{1}<\cdots<i_{d} \leq m
\end{aligned}
$$

- Problem: combinatorial explosion
- ${ }_{m} \mathrm{C}_{d}$ evaluations are needed.
- Calculation of all the combinations is possible only for small m and d.

Experiments of Variable Selection

■ Small data set

- Boston Housing: X :13 dim., $\mathrm{Y}=$ house price, 506 data.
- 4 variables are selected.
${ }_{13} \mathrm{C}_{4}=715$.

ACE: Breiman \& Friedman (1985)

	1st	2nd	3rd	ACE
CRIM		O		
ZN				
INDUS				
CHAS				
NOX				
RM	O	O	O	O
AGE				
DIS			O	
RAD				
TAX	O		O	O
PTRATIO	O	O		O
B				
LSTAT	O	O	O	O

Variable Selection for Large Data Sets

- Computational issue
- Combinatorial explosion

If m and d are large, e.g. $m=1000, d=20$, evaluation of all the subsets is intractable.

- Efficient optimization
- Greedy algorithm

1. Start from one variable.
2. For already chosen t variables $S_{t}=\left\{X_{i}, \ldots, X_{i_{t}}\right\}$, evaluate KGV of $S_{t} \cup\left\{X_{j}\right\}$ for all j, and select the best one.
3. Repeat this to d variables.

- Random optimization

Genetic algorithm

Application: Gene Selection

■ AML/ALL classification (Golub et al. 1999)

- Microarray data: 6817 dim. 38 data.
- Class label:

AML (acute myeloid leukemia) / ALL (acute lymphoblastic leukemia).

- Golub et al (1999 Science) show 50 effective genes using nearest neighborhood analysis.
- Results
- 50 genes are selected by the kernel method and compared with previous works.

Kernel

1 Leukotriene C4 synthase (LTC4S) 2 Zyxin

3 FAH Fumarylacetoacetate
4 LYN V-yes-1 Yamaguchi sarcoma
5 LEPR Leptin receptor
6 CD33 CD33 antigen (differentiati
7 Liver mRNA for interferon-gamma
8 "PRG1 Proteoglycan 1, secretory
9 GB DEF $=$ Homeodomain protein Hox 10 DF D component of complement (ad 11 INTERLEUKIN-8 PRECURSOR 12 INDUCED MYELOID LEUKEMIA 13 "PEPTIDYL-PROLYL CIS-TRANS 14 Phosphotyrosine independent liga 15 ATP6C Vacuolar H+ATPase proton 16 CST3 Cystatin C (amyloid angiopa 17 Interleukin 8 (IL8) gene 18 CTSD Cathepsin D (lysosomal aspa 19 IITGAX Integrin, alpha X (antige 20 "LGALS3 Lectin, galactoside-bind 21 Epb72 gene exon 1
22 MAJ OR HISTOCOMPATIBILITY
23 LYZ Lysozyme
24 Azurocidin gene
25 "PFC Properdin P factor, complem 26 Lysophosphol ipase homolog (HU-K5 27 PPGB Protective protein for beta 28 "Catalase (EC 1.11.1.6) 5'flank 29 FTH 1 Ferritin heavy chain
30 "CD36 CD36 antigen (collagen typ 31 EUKARYOTIC PEPTIDE CHAIN 32 GB DEF = CD36 gene exon 15 33 CSF 1 Colony-stimulating factor 1 34 CA2 Carbonic anhydrase II
35 Hepatocyte growth factor-like pr 36 MPO Myeloperoxidase
37 "CHRNA7 Cholinergic receptor, ni 38 AFFX-HUMTFRR/M11507_M_a 39 "C1NH Complement component 1 inh 40 "GB DEF = Glycophorin Sta (type 41 GYPE Glycophorin E
42 AFFX-HUMTFRR/M11507 3 at 42 AFFX-HUMTFRR/M11507_3_at 43 Metabotropic glutamate receptor 44 "GB DEF = Neutrophil elastase 46 GB DEF = Kazal-type serine prote 47 LCAT Lecithin-cholesterol acyltr 48 "ALDH2 Aldehyde dehydrogenase 2, 49 ANX8 Annexin VIII 50 "PRSS3 Protease, serine, 3 (tryp

Summary

- Kernel method for dimension reduction in regression
- Dimension reduction for regression = conditional independence.
- Conditional covariance operators gives the criterion for the conditional independence.
- Kernel dimension reduction / variable selection
- have wide applicability to dimension reduction / variable selection. c.f. other methods have some restrictions.
- find effective subspaces / variables in practical problems.
- Future/ongoing studies
- Theoretical analysis of the estimator: consistency etc.
- How to choose the number of dimensions.
- More efficient optimization techniques for variable selection.
- Mixture of effective subspaces.

