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Introduction

B Dimension reduction for regression
— Regression

Y~ f(X,2) or p(Y | X)
Y: response variable, X: mdim. explanatory variable, Z: noise

— Goal: Find effective subspace defined by B.

E(YIBTX) = p(Y | X) B: mxd matrix dis fixed.

» Effective subspace to explain .
« Compact representation of the statistical relation.
— data analysis : what determines Y ?.
— preprocessing of regression:
accuracy of regression, computational efficiency.
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Introduction

— Example

[
| FL T L

| o 'a
r L]
|

y-_ 2 +N(0; 0.12) v
1+exp(—2Xy) ' ,




Introduction

B Semi-parametric problem

Assume By (Y|X)=p(Y] ng) By:mxd  matrix

ii.d. sample (X®,YD),,(x™ Y™y given.

Find the subspace B, without knowing anything about py,y (or P).

There is the infinite degree of freedom on unestimated p.
- Semiparametric problem.

B Approach

— Formulate the problem by conditional independence.

— Use reproducing kernel Hilbert spaces as functional spaces for
the infinite degree of freedom.



Existing Methods

Sliced Inverse Regression (SIR, Li 1991)

— PCA of E[X[]Y] - usesliceof Y.

— Semiparametric method: no assumption on p(Y]X).

— Elliptic assumption on the distribution of X is necessary.

Principle Hessian Direction (pHd, Li 1992)

— Average Hessian Zyy = E[(Y-Y)(X - X)(X-X)"] is used.
— If X'is Gaussian, eigenvectors gives the effective directions.
— Gaussian assumption on X. Y must be one-dimensional.

Projection pursuit approach (e.g. Friedman et al. 1981)
— Additive model is used for regressor.

Canonical Correlation Analysis (CCA) / Partial Least Square (PLS)
— Linear assumption on the regression.



Conditional Independence

B Dimension reduction and conditional independence
(U, V)=(B'™X, C™X) for (B,C)eO(m)
B gives the effective subspace < pyx (Y1) = Py (YIB'X)
< pyuv(YIuv)=py(ylu) forall y,u,v

< Conditional independence Y LV |U
B Characterization of

conditional independence
> Reproducing kernel Hilbert space (RKHS)




Reproducing Kernel Hilbert Space

B Definition
Q:set. H: Hilbertspace c{f:Q—> R}
H : reproducing kernel Hilbert space (RKHS)

< Fk:QxQ—>R symmetric function (reproducing kernel) s.t.
1) k(-,x)eH forall xeQ.

2) (k(-,x),f), =f(x) forvf eH, xeQ. reproducing property

Reproducing property makes computation easy and feasible.
€.9.) For f=3" ak(,X), g = > bik(, X;)

(f.9), =2 abik(X;, Xj)

— Example: Gaussian kernel 21
CRTXR™ R, k(xY)=expl[x-y|?/o?)
:} There is a RKHS on R™with reproducing kernel k.



RKHS and Independence

B Independence and characteristic functions
Random variables X and Y are independent

& Eyle @ Xe Y |2 g e g, [e™Y|  forall wand 7.

e/ and e 'Y work as test functions
which account for the infinite degree of freedom (L?).

B RKHS characterization
H, and H, are RKHS on Q, and Q,, respectively.
Random variables X e Q, and Y eQ, are independent

& Ex[f(X)aN)]=Ex[f(X)]E/[g(Y)] forall feHy, geHy

This is true if H, and H, are RKHS for Gaussian kernels.
(Bach & Jordan 2002)



Cross-covariance Operator

B Definition

Xand Y: random variable on Q, and Q,, respectively.
H, and H, : RKHS on Q, and Q,, respectively, with bounded kernels.

We can define a bounded operator 3., :H, —>H, by

(9 Zyx Ty = Exy[ T (X)g()]=Ex[ F (X)IE/[9(Y)] (= Cov[ f(X),g(Y)])
forall feHy, geHy
Xy Is called cross-covariance operator.

B Cross-covariance operator and Independence

Theorem
H, and H, : RKHS with Gaussian kernel.

X and Y are independent < Xy =0
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RKHS and Conditional Independence

B Conditional covariance

Xand Y are random vectors. H,, H,: RKHS with kernel k, k, resp.

Assumption: azxx‘l » Eyx[9(Y) [ X]eH y forallgeH,.

<f vy _ZYXZ;<1><ZXY9> = Ex [COVY|x[f(Y),9(Y) | X] ]

Def. Zvyix =Zvy —ZyxZ xx Iy xy . conditional covariance operator
c.f. For Gaussian ConlX [aTY, b'Y | X =X] = a' (VW —WVix Vi _]VXY )b

— Monotonicity of conditional covariance operators
Y, X=(U,V) : random vectors

> . In the sense of
self-adjoint operators
11
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RKHS and Conditional Independence

B Conditional independence

Theorem
X=(U,V) and Y are random vectors.

H, , H,, Hy : RKHS with Gaussian kernel ky, k, ky, resp.
Eyx[9(Y)| X]eHy and Ey,[g(Y)|U]eH forallgeH,.

) YLVIU < Zyyy =Zyyyx

B Minimization of conditional covariance operator

B-LrJn—iQTx Zyyy —) B gives the effective subspace

— Evaluation
e Operator norm -- maximum eigenvalue.
 Trace norm -- sum of eigenvalues
e Determinant -- product of eigenvalues
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Kernel Dimension Reduction

B Estimation of conditional covariance operator
(XD, YD), o, (X, Y)Y = ji.d. sample from the true joint probability.

The space is restricted in the linear hull of {k(-,X")|1<i<n}
and {k(, Y |1<i<n}

Replace Xy, by nx nmatrix
iWyu = iW _ivu 2uu _1iuv
where
Sou =Gy +€10)? Zyw =Gy +£1,)?, Zyy =GyGy
¢ . regularization coefficient
Gy = (1, -21,1, )k, WO UD) 1, ~ 212, T)
Gy = (1= 21,3, ke (YO, YD) 1, - 21,2,7)

reproducing property and empirical average
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Kernel Dimension Reduction

B Kernel dimension reduction (KDR)

min
B

“min detfl,— Sy Y80S0 SurSe
B

A A A A qa
pr =2yy —ZyyZyy  2uy

U=B"X

N N

1/2J

A det>
min [YU][YU]

g | detZ,, detX,,

Sy Zw}

where 3 [
[YU][YU] =
2uy  Zuu

Kernel generalized variance (KGV, Bach & Jordan 2002)

Kernel Dimension Reduction (KDR) = minimization of KGV
Minimization method — gradient-based method.
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Kernel Dimension Reduction

B Extension of Kernel ICA

— Kernel ICA (Bach & Jordan 02): kernel method for independence.
- KDR: kernel method for conditional independence.

B \Wide applicability of KDR

— Semiparametric method: no assumptions on p(Y|X) .

— KDR needs no strong assumption on the distribution of X, Y and
dimensionality of Y.

c.f. other method; SIR, pHd, CCA, PLS, etc.

B Computational cost

— Multiplication of n x n matrices is computationally hard.
- Incomplete Cholesky decomposition

— Local minimum - annealing is used in gradient method.
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Experiments

B Synthesized data
— Data R

X: 2 dim, Y: 1 dim S Doant Fa
100 data L. ) D S S S B A S A

Y ~ 2exp(—X{) + N(0; 0.1%)

— Results

05
\\\\\\\\\\\
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SIR | pHd | CCA | PLS | KDR
Angle (deg.) | -86.522 | 57.015 |-10.416 | -26.093 | 0.298
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Experiments

B \WVine data
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— Data

13 dim. 178 data.

3 classes

2 dim. projection

KDR
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Experiments

B Classification accuracy

— Purpose:
to see how much information on Y is maintained in the
low-dimensional subspace of X.

— Test classification accuracy of Support Vector Machine after
reducing dimensionality.

— Data sets for binary classification from UCI repository.

— Comparison with pHd.
Many methods are NOT applicable for binary classification tasks.
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Experiments

Breast-cancer-Wisconsin
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Experiments

Heart-disease

X: 13 dim.
# training data=149,
# test data=148 801
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Experiments

lonosphere
_ 100 ‘ ‘ ‘ ‘
X: 34 dim. —e— Kernel
—¢— PHD
# training data=151 o8| Al variables
# test data=200 .
= 9
-% 94 -
£ w
90~
88

3 5 10 15 20 34
Number of variables

21



Extension to Variable Selection

B Variable selection by KGV
— Select subset (X .., X ) from {X,, ..., X.}.

— Principle

— KGV gives an objective function for variable selection.

min
U

det X vy pvu)

detX,y dets

min is taken over subsets
U =(Xj,....X; ) where 1<i; <---<ig<m

— Problem: combinatorial explosion
« .C,evaluations are needed.

« Calculation of all the combinations is possible only for small
mand d.
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Experiments of Variable Selection

B Small data set

— Boston Housing:
X :13 dim.,
Y = house price,
506 data.
— 4 variables are selected.
13C, = 715.

ACE: Breiman & Friedman (1985)
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Variable Selection for Large Data Sets

B Computational iIssue

— Combinatorial explosion

If mand d are large, e.g. m=1000, d=20, evaluation of all the
subsets is intractable.

B Efficient optimization
— Greedy algorithm
1. Start from one variable.

2. For already chosen tvariables § ={X| ,..., X| 1
evaluate KGV of § U{X;} for all j, and select the best one.

3. Repeat this to d variables.

— Random optimization
Genetic algorithm

24



Application: Gene Selection

B AML/ALL classification (Golub et al. 1999)

— Microarray data: 6817 dim. 38 data.

— Class label:
AML (acute myeloid leukemia) / ALL (acute lymphoblastic
leukemia).

— Golub et al (1999 Science) show 50 effective genes using nearest
neighborhood analysis.

B Results

— 50 genes are selected by the kernel method and compared with
previous works.
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Kernel

1 Leukotriene C4 synthase (LTC4S)

2 Zyxin

3 FAH Fumarylacetoacetate

4 LYN V-yes-1 Yamaguchi sarcoma

5 LEPR Leptin receptor

6 CD33 CD33 antigen (differentiati

7 Liver mRNA for interferon-gamma

8 "PRG1 Proteoglycan 1, secretory

9 GB DEF = Homeodomain protein Hox
10 DF D component of complement (ad
11 INTERLEUKIN-8 PRECURSOR
12 INDUCED MYELOID LEUKEMIA
13 "PEPTIDYL-PROLYL CIS-TRANS
14 Phosphotyrosine independent liga
15 ATP6C Vacuolar H+ ATPase proton
16 CST3 Cystatin C (amyloid angiopa
17 Interleukin 8 (IL8) gene

18 CTSD Cathepsin D (lysosomal aspa
19 "ITGAX Integrin, alpha X (antige
20 "LGALS3 Lectin, galactoside-bind
21 Epb72 gene exon 1

22 MAJOR HISTOCOMPATIBILITY
23 LYZ Lysozyme

24 Azurocidin gene

25 "PFC Properdin P factor, complem
26 Lysophospholipase homolog (HU-K5
27 PPGB Protective protein for beta
28 "Catalase (EC 1.11.1.6) 5'flank

29 FTH1 Ferritin heavy chain

30 "CD36 CD36 antigen (collagen typ
31 EUKARYOTIC PEPTIDE CHAIN
32 GB DEF = CD36 gene exon 15

33 CSF1 Colony-stimulating factor 1
34 CA2 Carbonic anhydrase 11

35 Hepatocyte growth factor-like pr
36 MPO Myeloperoxidase

37 "CHRNA7 Cholinergic receptor, ni
38 AFFX-HUMTFRR/M11507_M_at
39 "C1INH Complement component 1 inh
40 "GB DEF = Glycophorin Sta (type
41 GYPE Glycophorin E

42 AFFX-HUMTFRR/M11507_3 at

43 Metabotropic glutamate receptor
44 "GB DEF = Neutrophil elastase ge
45 "ELAZ2 Elastatse 2, neutrophil”

46 GB DEF = Kazal-type serine prote
47 LCAT Lecithin-cholesterol acyltr
48 "ALDH2 Aldehyde dehydrogenase 2,
49 ANX8 Annexin VIII

50 "PRSS3 Protease, serine, 3 (tryp

#agree/#selected

Application: Gene Selection
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Summary

B Kernel method for dimension reduction in regression
— Dimension reduction for regression = conditional independence.

— Conditional covariance operators gives the criterion for the
conditional independence.

B Kernel dimension reduction / variable selection

— have wide applicability to dimension reduction / variable selection.
c.f. other methods have some restrictions.

— find effective subspaces / variables in practical problems.

B Future/ongoing studies
— Theoretical analysis of the estimator: consistency etc.
— How to choose the number of dimensions.
— More efficient optimization techniques for variable selection.

— Mixture of effective subspaces. .
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